Refine
Document Type
- Conference Proceeding (57)
- Article (unreviewed) (20)
- Article (reviewed) (11)
- Report (3)
Conference Type
- Konferenzartikel (56)
- Konferenz-Poster (1)
Language
- English (91)
Is part of the Bibliography
- yes (91)
Keywords
- Deep learning (14)
- Deep Leaning (12)
- Machine Learning (9)
- Künstliche Intelligenz (4)
- Robustness (4)
- image classification (4)
- Artificial Intelligence (3)
- Generative Adversarial Network (3)
- deep learning (3)
- Aliasing (2)
Open Access
- Open Access (69)
- Bronze (20)
- Diamond (16)
- Closed Access (12)
- Closed (10)
- Gold (4)
- Grün (3)
- Hybrid (2)
Funding number
- 510101077 (3)
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data correctly into tracks. In this work, we present a self-supervised multiple object tracking approach based on visual features and minimum cost lifted multicuts. Our method is based on straight-forward spatio-temporal cues that can be extracted from neighboring frames in an image sequences without supervision. Clustering based on these cues enables us to learn the required appearance invariances for the tracking task at hand and train an AutoEncoder to generate suitable latent representations. Thus, the resulting latent representations can serve as robust appearance cues for tracking even over large temporal distances where no reliable spatio-temporal features can be extracted. We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking.
Deep generative models have recently achieved impressive results for many real-world applications, successfully generating high-resolution and diverse samples from complex datasets. Due to this improvement, fake digital contents have proliferated growing concern and spreading distrust in image content, leading to an urgent need for automated ways to detect these AI-generated fake images.
Despite the fact that many face editing algorithms seem to produce realistic human faces, upon closer examination, they do exhibit artifacts in certain domains which are often hidden to the naked eye. In this work, we present a simple way to detect such fake face images - so-called DeepFakes. Our method is based on a classical frequency domain analysis followed by basic classifier. Compared to previous systems, which need to be fed with large amounts of labeled data, our approach showed very good results using only a few annotated training samples and even achieved good accuracies in fully unsupervised scenarios. For the evaluation on high resolution face images, we combined several public datasets of real and fake faces into a new benchmark: Faces-HQ. Given such high-resolution images, our approach reaches a perfect classification accuracy of 100% when it is trained on as little as 20 annotated samples. In a second experiment, in the evaluation of the medium-resolution images of the CelebA dataset, our method achieves 100% accuracy supervised and 96% in an unsupervised setting. Finally, evaluating a low-resolution video sequences of the FaceForensics++ dataset, our method achieves 91% accuracy detecting manipulated videos.
In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.
Correlation Clustering, also called the minimum cost Multicut problem, is the process of grouping data by pairwise similarities. It has proven to be effective on clustering problems, where the number of classes is unknown. However, not only is the Multicut problem NP-hard, an undirected graph G with n vertices representing single images has at most edges, thus making it challenging to implement correlation clustering for large datasets. In this work, we propose Multi-Stage Multicuts (MSM) as a scalable approach for image clustering. Specifically, we solve minimum cost Multicut problems across multiple distributed compute units. Our approach not only allows to solve problem instances which are too large to fit into the shared memory of a single compute node, but it also achieves significant speedups while preserving the clustering accuracy at the same time. We evaluate our proposed method on the CIFAR10 …
Motivated by the recent trend towards the usage of larger receptive fields for more context-aware neural networks in vision applications, we aim to investigate how large these receptive fields really need to be. To facilitate such study, several challenges need to be addressed, most importantly: (i) We need to provide an effective way for models to learn large filters (potentially as large as the input data) without increasing their memory consumption during training or inference, (ii) the study of filter sizes has to be decoupled from other effects such as the network width or number of learnable parameters, and (iii) the employed convolution operation should be a plug-and-play module that can replace any conventional convolution in a Convolutional Neural Network (CNN) and allow for an efficient implementation in current frameworks. To facilitate such models, we propose to learn not spatial but frequency representations of filter weights as neural implicit functions, such that even infinitely large filters can be parameterized by only a few learnable weights. The resulting neural implicit frequency CNNs are the first models to achieve results on par with the state-of-the-art on large image classification benchmarks while executing convolutions solely in the frequency domain and can be employed within any CNN architecture. They allow us to provide an extensive analysis of the learned receptive fields. Interestingly, our analysis shows that, although the proposed networks could learn very large convolution kernels, the learned filters practically translate into well-localized and relatively small convolution kernels in the spatial domain.
Recently, RobustBench (Croce et al. 2020) has become a widely recognized benchmark for the adversarial robustness of image
classification networks. In it’s most commonly reported sub-task, RobustBench evaluates and ranks the adversarial robustness of trained neural networks on CIFAR10 under AutoAttack (Croce and Hein 2020b) with l∞ perturbations limited to ϵ = 8/255. With leading scores of the currently best performing models of around 60% of the baseline, it is fair to characterize this benchmark to be quite challenging. Despite it’s general acceptance in recent literature, we aim to foster discussion about the suitability of RobustBench as a key indicator for robustness which could be generalized to practical applications. Our line of argumentation against this is two-fold and supported by excessive experiments presented in this paper: We argue that I) the alternation of data by AutoAttack with l∞, ϵ = 8/255 is unrealistically strong, resulting in close to perfect detection rates of adversarial samples even by simple detection algorithms and human observers.
We also show that other attack methods are much harder to detect while achieving similar success rates. II) That results on low resolution data sets like CIFAR10 do not generalize well to higher resolution images as gradient based attacks appear to become even more detectable with increasing resolutions.
Vision language models (VLMs) have drastically changed the computer vision model landscape in only a few years, opening an exciting array of new applications from zero-shot image classification, over to image captioning, and visual question answering. Unlike pure vision models, they offer an intuitive way to access visual content through language prompting. The wide applicability of such models encourages us to ask whether they also align with human vision - specifically, how far they adopt human-induced visual biases through multimodal fusion, or whether they simply inherit biases from pure vision models. One important visual bias is the texture vs. shape bias, or the dominance of local over global information. In this paper, we study this bias in a wide range of popular VLMs. Interestingly, we find that VLMs are often more shape-biased than their vision encoders, indicating that visual biases are modulated to some extent through text in multimodal models. If text does indeed influence visual biases, this suggests that we may be able to steer visual biases not just through visual input but also through language: a hypothesis that we confirm through extensive experiments. For instance, we are able to steer shape bias from as low as 49% to as high as 72% through prompting alone. For now, the strong human bias towards shape (96%) remains out of reach for all tested VLMs.
Despite the success of convolutional neural networks (CNNs) in many computer vision and image analysis tasks, they remain vulnerable against so-called adversarial attacks: Small, crafted perturbations in the input images can lead to false predictions. A possible defense is to detect adversarial examples. In this work, we show how analysis in the Fourier domain of input images and feature maps can be used to distinguish benign test samples from adversarial images. We propose two novel detection methods: Our first method employs the magnitude spectrum of the input images to detect an adversarial attack. This simple and robust classifier can successfully detect adversarial perturbations of three commonly used attack methods. The second method builds upon the first and additionally extracts the phase of Fourier coefficients of feature-maps at different layers of the network. With this extension, we are able to improve adversarial detection rates compared to state-of-the-art detectors on five different attack methods. The code for the methods proposed in the paper is available at github.com/paulaharder/SpectralAdversarialDefense
Estimating the Robustness of Classification Models by the Structure of the Learned Feature-Space
(2022)
Over the last decade, the development of deep image classification networks has mostly been driven by the search for the best performance in terms of classification accuracy on standardized benchmarks like ImageNet. More recently, this focus has been expanded by the notion of model robustness, \ie the generalization abilities of models towards previously unseen changes in the data distribution. While new benchmarks, like ImageNet-C, have been introduced to measure robustness properties, we argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions. To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space. We introduce robustness indicators which are obtained via unsupervised clustering of latent representations from a trained classifier and show very high correlations to the model performance on corrupted test data.
Over the last years, Convolutional Neural Networks (CNNs) have been the dominating neural architecture in a wide range of computer vision tasks. From an image and signal processing point of view, this success might be a bit surprising as the inherent spatial pyramid design of most CNNs is apparently violating basic signal processing laws, i.e. Sampling Theorem in their down-sampling operations. However, since poor sampling appeared not to affect model accuracy, this issue has been broadly neglected until model robustness started to receive more attention. Recent work in the context of adversarial attacks and distribution shifts, showed after all, that there is a strong correlation between the vulnerability of CNNs and aliasing artifacts induced by poor down-sampling operations. This paper builds on these findings and introduces an aliasing free down-sampling operation which can easily be plugged into any CNN architecture: FrequencyLowCut pooling. Our experiments show, that in combination with simple and Fast Gradient Sign Method (FGSM) adversarial training, our hyper-parameter free operator substantially improves model robustness and avoids catastrophic overfitting. Our code is available at https://github.com/GeJulia/flc_pooling