Refine
Document Type
- Article (reviewed) (38)
- Conference Proceeding (13)
- Part of a Book (1)
- Article (unreviewed) (1)
Conference Type
- Konferenzartikel (13)
Language
- English (53)
Is part of the Bibliography
- yes (53)
Keywords
- printed electronics (5)
- oxide electronics (2)
- Computer science (1)
- Electrical and electronic engineering (1)
- Electrolyte-gated transistors (1)
- Feldeffekt (1)
- Halbleiter (1)
- Hybrid system (1)
- Internet of Things (1)
- IoT security (1)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (37)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (15)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (7)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (1)
- INES - Institut für nachhaltige Energiesysteme (1)
Open Access
- Closed Access (30)
- Open Access (15)
- Closed (3)
- Bronze (1)
- Gold (1)
Amorphous In-Ga-Zn-O (IGZO) is a high-mobility semiconductor employed in modern thin-film transistors for displays and it is considered as a promising material for Schottky diode-based rectifiers. Properties of the electronic components based on IGZO strongly depend on the manufacturing parameters such as the oxygen partial pressure during IGZO sputtering and post-deposition thermal annealing. In this study, we investigate the combined effect of sputtering conditions of amorphous IGZO (In:Ga:Zn=1:1:1) and post-deposition thermal annealing on the properties of vertical thin-film Pt-IGZO-Cu Schottky diodes, and evaluated the applicability of the fabricated Schottky diodes for low-frequency half-wave rectifier circuits. The change of the oxygen content in the gas mixture from 1.64% to 6.25%, and post-deposition annealing is shown to increase the current rectification ratio from 10 5 to 10 7 at ±1 V, Schottky barrier height from 0.64 eV to 0.75 eV, and the ideality factor from 1.11 to 1.39. Half-wave rectifier circuits based on the fabricated Schottky diodes were simulated using parameters extracted from measured current-voltage and capacitance-voltage characteristics. The half-wave rectifier circuits were realized at 100 kHz and 300 kHz on as-fabricated Schottky diodes with active area of 200 μm × 200 μm, which is relevant for the near-field communication (125 kHz - 134 kHz), and provided the output voltage amplitude of 0.87 V for 2 V supply voltage. The simulation results matched with the measurement data, verifying the model accuracy for circuit level simulation.
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
(2020)
Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.
Advances in printed electronics (PE) enables new applications, particularly in ultra-low-cost domains. However, achieving high-throughput printing processes and manufacturing yield is one of the major challenges in the large-scale integration of PE technology. In this article, we present a programmable printed circuit based on an efficient printed lookup table (pLUT) to address these challenges by combining the advantages of the high-throughput advanced printing and maskless point-of-use final configuration printing. We propose a novel pLUT design which is more efficient in PE realization compared to existing LUT designs. The proposed pLUT design is simulated, fabricated, and programmed as different logic functions with inkjet printed conductive ink to prove that it can realize digital circuit functionality with the use of programmability features. The measurements show that the fabricated LUT design is operable at 1 V.
Many different methods, such as screen printing, gravure, flexography, inkjet etc., have been employed to print electronic devices. Depending on the type and performance of the devices, processing is done at low or high temperature using precursor- or particle-based inks. As a result of the processing details, devices can be fabricated on flexible or non-flexible substrates, depending on their temperature stability. Furthermore, in order to reduce the operating voltage, printed devices rely on high-capacitance electrolytes rather than on dielectrics. The printing resolution and speed are two of the major challenging parameters for printed electronics. High-resolution printing produces small-size printed devices and high-integration densities with minimum materials consumption. However, most printing methods have resolutions between 20 and 50 μm. Printing resolutions close to 1 μm have also been achieved with optimized process conditions and better printing technology.
The final physical dimensions of the devices pose severe limitations on their performance. For example, the channel lengths being of this dimension affect the operating frequency of the thin-film transistors (TFTs), which is inversely proportional to the square of channel length. Consequently, short channels are favorable not only for high-frequency applications but also for high-density integration. The need to reduce this dimension to substantially smaller sizes than those possible with today’s printers can be fulfilled either by developing alternative printing or stamping techniques, or alternative transistor geometries. The development of a polymer pen lithography technique allows scaling up parallel printing of a large number of devices in one step, including the successive printing of different materials. The introduction of an alternative transistor geometry, namely the vertical Field Effect Transistor (vFET), is based on the idea to use the film thickness as the channel length, instead of the lateral dimensions of the printed structure, thus reducing the channel length by orders of magnitude. The improvements in printing technologies and the possibilities offered by nanotechnological approaches can result in unprecedented opportunities for the Internet of Things (IoT) and many other applications. The vision of printing functional materials, and not only colors as in conventional paper printing, is attractive to many researchers and industries because of the added opportunities when using flexible substrates such as polymers and textiles. Additionally, the reduction of costs opens new markets. The range of processing techniques covers laterally-structured and large-area printing technologies, thermal, laser and UV-annealing, as well as bonding techniques, etc. Materials, such as conducting, semiconducting, dielectric and sensing materials, rigid and flexible substrates, protective coating, organic, inorganic and polymeric substances, energy conversion and energy storage materials constitute an enormous challenge in their integration into complex devices.
In this report, we have studied field-effect transistors (FETs) using low-density alumina for electrolytic gating. Device layers have been prepared starting from the structured ITO glasses by printing the In 2 O 3 channels, low-temperature atomic layer deposition (ALD) of alumina (Al 2 O 3 ), and printing graphene top gates. The transistor performance could be deliberately changed by alternating the ambient humidity; furthermore, ID,ON/ID,OFF-ratios of up to seven orders of magnitude and threshold voltages between 0.66 and 0.43 V, decreasing with an increasing relative humidity between 40% and 90%, could be achieved. In contrast to the common usage of Al 2 O 3 as the dielectric in the FETs, our devices show electrolyte-typegating behavior. This is a result from the formation of protons on the Al 2 O 3 surfaces at higher humidities. Due to the very high local capacitances of the Helmholtz double layers at the channel surfaces, the operation voltage can be as low as 1 V. At low humidities (≤30%), the solid electrolyte dries out and the performance breaks down; however, it can fully reversibly be regained upon a humidity increase. Using ALD-derived alumina as solid electrolyte gating material, thus, allows low-voltage operation and provides a chemically stable gating material while maintaining low process temperatures. However, it has proven to be highly humidity-dependent in its performance.
Rectifiersare vital electronic circuits for signal and power conversion in various smart sensor applications. The ability to process low input voltage levels, for example, from vibrational energy harvesters is a major challenge with existing passive rectifiers in printed electronics, stemming mainly from the built-in potential of the diode's p-njunction. To address this problem, in this work, we design, fabricate, and characterize an inkjet-printed full-wave rectifier using diode-connected electrolyte-gated thin-film transistors (EGTs). Using both experimental and simulation approaches, we investigate how the rectifier can benefit from the near-zero threshold voltage of transistors, which can be enabled by proper channel geometry setting in EGT technology. The presented circuit can be operated at 1-V input voltage, featuring a remarkably small voltage loss of 140 mV and a cutoff frequency of ~300 Hz. Below the cutoff frequency, more than 2.6-μW dc power is obtained over the load resistances ranging from 5 to 20 kQ. Furthermore, experiments show that the circuit can work with an input amplitude down to 500 mV. This feature makes the presented design highly suitable for a variety of energy-harvesting applications.
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
(2020)
Printed and flexible metal‐oxide transistor technology has recently demonstrated great promise due to its high performance and robust mechanical stability. Herein, fully printed inverter structures using electrolyte‐gated oxide transistors on a flexible polyimide (PI) substrate are discussed in detail. Conductive graphene ink is printed as the passive structures and interconnects. The additive printed transistors on PI substrates show an on/off ratio of 106 and show mobilities similar to the state‐of‐the‐art printed transistors on rigid substrates. Printed meander structures of graphene are used as pull‐up resistances in a transistor–resistor logic to create fully printed inverters. The printed and flexible inverters show a signal gain of 3.5 and a propagation delay of 30 ms. These printed inverters are able to withstand a tensile strain of 1.5% following more than 200 cycles of mechanical bending. The stability of the electrical direct current (DC) properties has been observed over a period of 5 weeks. These oxide transistor‐based fully printed inverters are relevant for digital printing methods which could be implemented into roll‐to‐roll processes.
In this study, a facile method to fabricate a cohesive ion‐gel based gate insulator for electrolyte‐gated transistors is introduced. The adhesive and flexible ion‐gel can be laminated easily on the semiconducting channel and electrode manually by hand. The ion‐gel is synthesized by a straightforward technique without complex procedures and shows a remarkable ionic conductivity of 4.8 mS cm−1 at room temperature. When used as a gate insulator in electrolyte‐gated transistors (EGTs), an on/off current ratio of 2.24×104 and a subthreshold swing of 117 mV dec−1 can be achieved. This performance is roughly equivalent to that of ink drop‐casted ion‐gels in electrolyte‐gated transistors, indicating that the film‐attachment method might represent a valuable alternative to ink drop‐casting for the fabrication of gate insulators.
Printed electronics (PE) is a fast-growing field with promising applications in wearables, smart sensors, and smart cards, since it provides mechanical flexibility, and low-cost, on-demand, and customizable fabrication. To secure the operation of these applications, true random number generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of the PE circuits results in high intrinsic variations due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this article, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field-effect transistors (EGFETs). We also propose a printed resistor tuning flow for the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behavior. The simulation results show that the overall process variation of the TRNGs is mitigated by 110 times, and the generated bitstream of the tuned TRNGs passes the National Institute of Standards and Technology - Statistical Test Suite. For the proof of concept, the proposed TRNG circuit was fabricated and tuned. The characterization results of the tuned TRNGs prove that the TRNGs generate random bitstreams at the supply voltage of down to 0.5 V. Hence, the proposed TRNG design is suitable to secure low-power applications in this domain.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.
Novel manufacturing technologies, such as printed electronics, may enable future applications for the Internet of Everything like large-area sensor devices, disposable security, and identification tags. Printed physically unclonable functions (PUFs) are promising candidates to be embedded as hardware security keys into lightweight identification devices. We investigate hybrid PUFs based on a printed PUF core. The statistics on the intra- and inter-hamming distance distributions indicate a performance suitable for identification purposes. Our evaluations are based on statistical simulations of the PUF core circuit and the thereof generated challenge-response pairs. The analysis shows that hardware-intrinsic security features can be realized with printed lightweight devices.
Electrolyte-gated thin-film transistors (EGTs) with indium oxide channel, and expected lifetime of three months, enable low-voltage operation (~1 V) in the field of printed electronics (PEs). The channel width of our printed EGTs is varied between 200 and 1000 μm, whereas a channel length between 10 and 100 μm is used. Due to the lack of uniform performance p-type metal oxide semiconductors, n-type EGTs and passive elements are used to design circuits. For logic gates, transistor-resistor logic has been employed so far, but depletion and enhancement-mode EGTs in a transistor-transistor logic boost the circuit performance in terms of delay and signal swing. In this article, the threshold voltage of the EGT, which determines the operation mode, is tuned through sizing of the EGTs channel geometry. The feasibility of both transistor operation modes is demonstrated for logic gates and ring oscillators. An inverter operating at a supply voltage of 1 V shows a maximum gain of 9.6 and a propagation delay time of 0.7 ms, which represents an improvement of ~ 2x for the gain and oscillation frequency, in comparison with the resistor-transistor logic design. Moreover, the power consumption is reduced by 6x.
High-performance Ag–Se-based n-type printed thermoelectric (TE) materials suitable for room-temperature applications have been developed through a new and facile synthesis approach. A high magnitude of the Seebeck coefficient up to 220 μV K–1 and a TE power factor larger than 500 μW m–1 K–2 for an n-type printed film are achieved. A high figure-of-merit ZT ∼0.6 for a printed material has been found in the film with a low in-plane thermal conductivity κF of ∼0.30 W m–1 K–1. Using this material for n-type legs, a flexible folded TE generator (flexTEG) of 13 thermocouples has been fabricated. The open-circuit voltage of the flexTEG for temperature differences of ΔT = 30 and 110 K is found to be 71.1 and 181.4 mV, respectively. Consequently, very high maximum output power densities pmax of 6.6 and 321 μW cm–2 are estimated for the temperature difference of ΔT = 30 K and ΔT = 110 K, respectively. The flexTEG has been demonstrated by wearing it on the lower wrist, which resulted in an output voltage of ∼72.2 mV for ΔT ≈ 30 K. Our results pave the way for widespread use in wearable devices.
Printed Electronics technology is a key-enabler for smart sensors, soft robotics, and wearables. The inkjet printed electrolyte-gated field effect transistor (EGFET) technology is a promising candidate for such applications due to its low-power operation, high field-effect mobility, and on-demand fabrication. Unlike conventional silicon-based technologies, inkjet printed electronics technology is an additive manufacturing process where multiple layers are printed on top of each other to realize functional devices such as transistors and their interconnections. Due to the additive manufacturing process, the technology has limited routing layers. For routing of complex circuits, insulating crossovers are printed at the intersection of routing paths to isolate them. The crossover can alter the electrical properties of a circuit based on specific location on a routing path. In this work, we propose a crossover-aware placement and routing (COPnR) methodology for inkjet-printed circuits by integrating the crossover constraints in our design framework. Our proposed placement methodology is based on a state-of-the-art evolutionary algorithm while the routing optimization is done using a genetic algorithm. The proposed methodology is compared with the industrial standard placement and routing (PnR) tools. On average, the proposed methodology has 38% fewer crossovers and 94% fewer failing paths compared to the industrial PnR tools applied to printed circuit designs.
Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases.
A Hybrid Optoelectronic Sensor Platform with an Integrated Solution‐Processed Organic Photodiode
(2021)
Hybrid systems, unifying printed electronics with silicon‐based technology, can be seen as a driving force for future sensor development. Especially interesting are sensing elements based on printed devices in combination with silicon‐based high‐performance electronics for data acquisition and communication. In this work, a hybrid system integrating a solution‐processed organic photodiode in a silicon‐based system environment, which enables flexible device measurement and application‐driven development, is presented. For performance evaluation of the integrated organic photodiode, the measurements are compared to a silicon‐based counterpart. Therefore, the steady state response of the hybrid system is presented. Promising application scenarios are described, where a solution‐processed organic photodiode is fully integrated in a silicon system.
Neuromorphic computing systems have demonstrated many advantages for popular classification problems with significantly less computational resources. We present in this paper the design, fabrication and training of a programmable neuromorphic circuit, which is based on printed electrolytegated field-effect transistor (EGFET). Based on printable neuron architecture involving several resistors and one transistor, the proposed circuit can realize multiply-add and activation functions. The functionality of the circuit, i.e. the weights of the neural network, can be set during a post-fabrication step in form of printing resistors to the crossbar. Besides the fabrication of a programmable neuron, we also provide a learning algorithm, tailored to the requirements of the technology and the proposed programmable neuron design, which is verified through simulations. The proposed neuromorphic circuit operates at 5V and occupies 385mm 2 of area.
Electrolyte-gated transistors (EGTs) represent an interesting alternative to conventional dielectric-gating to reduce the required high supply voltage for printed electronic applications. Here, a type of ink-jet printable ion-gel is introduced and optimized to fabricate a chemically crosslinked ion-gel by self-assembled gelation, without additional crosslinking processes, e.g., UV-curing. For the self-assembled gelation, poly(vinyl alcohol) and poly(ethylene-alt-maleic anhydride) are used as the polymer backbone and chemical crosslinker, respectively, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) is utilized as an ionic species to ensure ionic conductivity. The as-synthesized ion-gel exhibits an ionic conductivity of ≈5 mS cm−1 and an effective capacitance of 5.4 µF cm−2 at 1 Hz. The ion-gel is successfully employed in EGTs with an indium oxide (In2O3) channel, which shows on/off-ratios of up to 1.3 × 106 and a subthreshold swing of 80.62 mV dec−1.
A physical unclonable function (PUF) is a hardware circuit that produces a random sequence based on its manufacturing-induced intrinsic characteristics. In the past decade, silicon-based PUFs have been extensively studied as a security primitive for identification and authentication. The emerging field of printed electronics (PE) enables novel application fields in the scope of the Internet of Things (IoT) and smart sensors. In this paper, we design and evaluate a printed differential circuit PUF (DiffC-PUF). The simulation data are verified by Monte Carlo analysis. Our design is highly scalable while consisting of a low number of printed transistors. Furthermore, we investigate the best operating point by varying the PUF challenge configuration and analyzing the PUF security metrics in order to achieve high robustness. At the best operating point, the results show areliability of 98.37% and a uniqueness of 50.02%, respectively. This analysis also provides useful and comprehensive insights into the design of hybrid or fully printed PUF circuits. In addition, the proposed printed DiffC-PUF core has been fabricated with electrolyte-gated field-effect transistor technology to verify our design in hardware.
Printed electronics can benefit from the deployment of electrolytesas gate insulators,which enables a high gate capacitance per unit area (1–10 μFcm−2) due to the formation of electrical double layers (EDLs). Consequently, electrolyte-gated field-effect transistors (EGFETs) attain high-charge carrier densities already in the subvoltage regime, allowing for low-voltage operation of circuits and systems. This article presents a systematic study of lumped terminal capacitances of printed electrolyte-gated transistors under various dc bias conditions. We perform voltage-dependent impedancemeasurements and separate extrinsic components from the lumped terminal capacitance.
The proposed Meyer-like capacitance model, which also accounts for the nonquasi-static (NQS) effect, agrees well with experimental data. Finally, to verify the model, we implement it in Verilog-A and simulate the transient response of an inverter and a ring oscillator circuit. Simulation results are in good agreement with the measurement data of fabricated devices.