Refine
Document Type
Conference Type
- Konferenzartikel (2)
- Konferenz-Abstract (1)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Keywords
Institute
Open Access
- Open Access (6)
- Hybrid (2)
- Bronze (1)
- Diamond (1)
Grey-box modelling combines physical and data-driven models to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling, as differential equations given by physical laws and neural networks can be combined in a single modelling framework. This simplifies the simulation and optimization and allows to consider irregularly-sampled data during training and evaluation of the model. We demonstrate this approach using two levels of model complexity; first, a simple parallel resistor-capacitor circuit; and second, an equivalent circuit model of a lithium-ion battery cell, where the change of the voltage drop over the resistor-capacitor circuit including its dependence on current and State-of-Charge is implemented as NODE. After training, both models show good agreement with analytical solutions respectively with experimental data.
Lithium-ion batteries show strongly nonlinear behaviour regarding the battery current and state of charge. Therefore, the modelling of lithium-ion batteries is complex. Combining physical and data-driven models in a grey-box model can simplify the modelling. Our focus is on using neural networks, especially neural ordinary differential equations, for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis for the grey-box model. Unknown parameters and dependencies are then replaced by learnable parameters and neural networks. We use experimental full-cycle data and data from pulse tests of a lithium iron phosphate cell to train the model. Finally, we test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Lithium-ion batteries exhibit slow voltage dynamics on the minute time scale that are usually associated with transport processes. We present a novel modelling approach toward these dynamics by combining physical and data-driven models into a Grey-box model. We use neural networks, in particular neural ordinary differential equations. The physical structure of the Grey-box model is borrowed from the Fickian diffusion law, where the transport domain is discretized using finite volumes. Within this physical structure, unknown parameters (diffusion coefficient, diffusion length, discretization) and dependencies (state of charge, lithium concentration) are replaced by neural networks and learnable parameters. We perform model-to-model comparisons, using as training data (a) a Fickian diffusion process, (b) a Warburg element, and (c) a resistor-capacitor circuit. Voltage dynamics during constant-current operation and pulse tests as well as electrochemical impedance spectra are simulated. The slow dynamics of all three physical models in the order of ten to 30 min are well captured by the Grey-box model, demonstrating the flexibility of the present approach.
Lithium-ion batteries exhibit a complex, nonlinear and dynamic voltage behaviour. Modelling their slow dynamics is a challenge due to the multiple potential causes involved. We present here a neural equivalent circuit model for lithium-ion batteries including slow voltage dynamics. The model uses an equivalent circuit with voltage source, series resistor, and diffusion element. The series resistance is parameterized using neural networks. The diffusion element is based on a discretized form of Fickian diffusion, parameterized using a neural network and learnable parameters. It is flexible to represent not only Warburg behaviour, but also resistor-capacitor-type dynamics. Mathematically, the resulting model is given by a differential–algebraic equation system combining ordinary and neural differential equations. Therefore, the model combines concepts of both physical theory (white-box model) and artificial intelligence (black-box model) to a combined framework (grey-box model). We apply this approach to a lithium iron phosphate based lithium-ion battery cell. The experimental voltage behaviour during constant-current cycles as well as the dynamics during pulse tests are well reproduced by the model. Only at very high and very low states of charge the simulation significantly deviates from experiments, which might result from insufficient training data in these regions.