Refine
Document Type
Language
- English (4)
Has Fulltext
- no (4)
Is part of the Bibliography
- yes (4)
Keywords
- Metallorganisches Netzwerk (2)
- Adsorption (1)
- Differenz (1)
- Isoglosse (1)
- Leitfähige Polymere (1)
- Oberflächenbehandlung (1)
- Raumgitter (1)
- Schaufelrad (1)
- Sorption (1)
- Werkstoff (1)
Institute
Open Access
- Closed Access (3)
Pure component sorption isotherms of n-butane, isobutane, 1-butene and isobutene on the metal–organic framework (MOF) 3∞[Cu4(μ4-O)(μ2-OH)2(Me2trz-pba)4] at various temperatures between 283 K and 343 K and pressures up to 300 kPa are presented. The isotherms show a stepwise pore filling which is typical for structurally flexible materials with broad adsorption–desorption hysteresis loops. Gate opening pressures in their endemic characteristic depend on the used hydrocarbon gases. From all investigated gases only the isotherms of 1-butene present a second step at a relative pressure above p/p0 = 0.55. As a consequence, only 1-butene can fully open the framework resulting in a pore volume of 0.54 cm3 g−1. This result is in good agreement with the value of 0.59 cm3 g−1 calculated based on single crystal structure data. The isosteric heat of adsorption was calculated from the experimental isotherms for all C4-isomers. At low loadings the isosteric heat is in a narrow region between 41 and 49 kJ mol−1. Moreover, in situ XRD measurements at different relative hydrocarbon pressures were performed at 298 K for the C4-isomers. The differences in the pressure-depending powder diffraction patterns indicate phase transitions as a result of adsorption. Similar diffraction patterns were observed for all C4-hydrocarbons, except 1-butene, where the second step at higher relative pressure (p/p0 > 0.55) is accompanied by an additional phase transition. This powder pattern resembles that of the as-synthesized MOF material containing solvent molecules in the pore system. The resulting structural changes of the material during guest and pressure induced external stimuli are evidenced by the new coupled XRD adsorption equipment.
Two closely related series of paddle-wheel-based triazolyl isophthalate MOFs are presented. Thermal and CO2 adsorption studies reveal network flexibility induced by alkyl substituents of the linker. By choice of the substituent, the pore volumes and pore diameters can be adjusted. Fine-tuning of the gate opening pressure and the hysteresis shape is possible by modulating the substitution pattern and by choice of the metal ion.
The formation and analysis of ten microporous triazolyl isophthalate based MOFs, including nine isomorphous and one isostructural compound is presented. The compounds 1 M – 3 M with the general formula [ M ( R 1 - R 2 - trz - ia ) ] ∞ 3 ·x H 2 O (M 2+ = Co 2+ , Cu 2+ , Zn 2+ , Cd 2+ ; R 1 = H, Me; R 2 = 2py, 2pym, prz (2py = 2-pyridinyle; 2pym = 2-pyrimidinyle; prz = pyrazinyle)) crystallize with rtl topology. They are available as single crystals and also easily accessible in a multi-gram scale via refluxing the metal salts and the protonated ligands in a solvent. Their isomorphous structures facilitate the synthesis of heteronuclear MOFs; in case of 2 M , Co 2+ ions could be gradually substituted by Cu 2+ ions. The Co 2+ :Cu 2+ ratios were determined by ICP-OES spectroscopy, the distribution of Co 2+ and Cu 2+ in the crystalline samples are investigated by SEM-EDX analysis leading to the conclusions that Cu 2+ is more favorably incorporated into the framework compared to Co 2+ and, moreover, that the distribution of the two metal ions between the crystals and within the crystals is inhomogeneous if the crystals were grown slowly. The various compositions of the heteronuclear materials lead to different colors and the sorption properties for CO 2 and N 2 are dependent on the integrated metal ions.
An isomorphous series of 10 microporous copper-based metal–organic frameworks (MOFs) with the general formulas ∞3[{Cu3(μ3-OH)(X)}4{Cu2(H2O)2}3(H-R-trz-ia)12] (R = H, CH3, Ph; X2– = SO42–, SeO42–, 2 NO32– (1–8)) and ∞3[{Cu3(μ3-OH)(X)}8{Cu2(H2O)2}6(H-3py-trz-ia)24Cu6]X3 (R = 3py; X2– = SO42–, SeO42– (9, 10)) is presented together with the closely related compounds ∞3[Cu6(μ4-O)(μ3-OH)2(H-Metrz-ia)4][Cu(H2O)6](NO3)2·10H2O (11) and ∞3[Cu2(H-3py-trz-ia)2(H2O)3] (12Cu), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.