Refine
Year of publication
Document Type
- Conference Proceeding (14)
- Contribution to a Periodical (9)
- Report (7)
- Article (reviewed) (1)
- Article (unreviewed) (1)
Conference Type
- Konferenzartikel (14)
- Sonstiges (1)
Is part of the Bibliography
- yes (32)
Keywords
- Energy Management (3)
- Gebäudeklimatisierung (3)
- Energiemarkt (2)
- Energy Flexibility (2)
- Fotovoltaik (2)
- Klimatechnik (2)
- Sanierung (2)
- Smart Grid (2)
- Smart PV (2)
- Blockheizkraftwerke (1)
Institute
Open Access
- Open Access (22)
- Bronze (11)
- Closed Access (6)
- Closed (3)
- Diamond (1)
Der vorliegende Leitfaden „Natürliche Gebäudeklimatisierung in Klassenzimmern“ greift einen nachhaltigen Ansatz zur deutlichen Reduzierung der sommerlichen Wärmebelastung in Klassenzimmern auf. Insbesondere die ersten sechs Jahre des 21. Jahrhunderts zeigten verstärkt Überhitzungstendenzen in sehr vielen Schulgebäuden der Region südlicher Oberrhein. In Verbindung mit der Umstellung des Schulbetriebs auf die Ganztagsschule und der deutlichen Verstärkung der Überhitzungstendenz in sanierten Gebäuden, die mit einem modernisierten Wärmeschutz versehen sind, zeigte sich für die Stadt Offenburg ein wichtiger Handlungsbedarf auf.
Aus der Kooperation der Stadt Offenburg mit der Hochschule Offenburg entwickelten sich mehrere Maßnahmenpakete bestehend aus einer Kombination bekannter physikalischer Sachverhalte und Verfahren, die mit den Möglichkeiten einer Gebäudeautomation gekoppelt werden und durch Einbindung der Nutzer in das Betriebskonzept zu einem thermisch verbesserten Arbeits- und Lernklima führen.
In vielen Schulgebäuden der Region südlicher Oberrhein zeigte sich seit Beginn dieses Jahrhunderts eine verstärkte Überhitzungstendenz. Besonders bei energetisch sanierten Schulen und durch die Umstellung des Schulbetriebs auf den Ganztagsunterricht zeigt sich eine stärkere Wärmebelastung durch die sommerlichen Temperaturen. Die Stadt Offenburg sah hier einen wichtigen Handlungsbedarf, um Klassenräume ohne den Einsatz energieintensiver Kältemaschinen thermisch zu entlasten. Durch einen deutlichen Anstieg beim Energieeinsatz für Kühlmaßnahmen würden die starken Einspareffekte bei den Heizkosten im Sommer neutralisiert. Interessant waren deshalb nachhaltige Lösungen die bei niedrigem Primärenergieeinsatz ein hohes Reduktionspotenzial bei der Kühllast bewirken. Verfahren der natürlichen Gebäudeklimatisierung führten in Zusammenarbeit mit der Forschungsgruppe nachhaltige Energietechnik der Hochschule Offenburg zu unterschiedlichen Nachtlüftungsstrategien zusammen mit ergänzenden Wärmeschutzmaßnahmen.
Das Projektvorhaben "Energienetzmanagement dezentraler KWK‐Anlagen mit diversen Verbraucherstrukturen", das vom Innovationsfonds der badenova AG & Co KG von Mai 2012 bis Juli 2016 unter der Fördernummer 2012‐09 gefördert wurde kann aus Sicht des Projektnehmers Hochschule Offenburg und seiner Partner Stadt Offenburg und G. und M. Zapf Energie GbR mbH als sehr erfolgreich umgesetztes Fördervorhaben bezeichnet werden. Während der ca. vier Jahre Projektlaufzeit konnten mehrere Reallabore geschaffen werden, die an die Eigenschaften eines Subnetzes in einem Smart Grid sehr nah herangeführt wurden. Alle Objekte bzw. Netzstrukturen verfügen über typische Komponenten eines Microgrids mit Energiequellen, Speichern und Senken. Auch wurde die Trigeneration als Netzvariante mit Strom‐ Wärme und Kältebereitstellung aufgegriffen und für Verteilnetzmodelle der Niederspannungsebene beschrieben. Ausgehend von einem Mikronetzmodell für jede Energieart kann hinter jeder Trafostation eine beliebig komplexe Energieversorgungsstruktur aufgespannt werden.
PHOTOPUR hat die Entwicklung eines photokatalytischen Prozesses zur Beseitigung von Pflanzenschutzmitteln (PSM) aus dem Reinigungswasser von Spritzgeräten zum Ziel. Am INES wurde eine Energieversorgung für die photokatalytische Reinigung in zwei Bachelorarbeiten entwickelt und als Demosystem aufgebaut. Das Gesamtsystem ist nun als mobile Einheit verfügbar und wurde zuletzt um das Reaktormodul für den photokatalytischen Prozeß erweitert und den Partnern für intensive Tests übergeben.
Beim vorliegenden EnBau-Forschungsvorhaben sollte im Rahmen des ENOB-Förderprogramm ein Langzeitmonitoring des Neubauvorhabens Solar Info Center Freiburg (SIC) mit folgenden Untersuchungsschwerpunkten durchgeführt werden:
• Natürliche Klimatisierung mit Nachtlüftung und Einzelanbindung der Büroflächen
• Erdsondenkühlung für Seminarraum und Foyer
• Zonenweise Abschaltung und Optimierung des Heizbetriebs
• Optimierung Lüftungsbetrieb
• Sonnenschutzanlagen
• Analyse Stromverbrauch / Gesamtenergiebilanz
• Bedarfsanalyse der Nutzer
• Erstellung einer „Betriebsanleitung“ für das Gebäude
• Kurzzeitmessungen
• Gebäudeautomation
Die gesamte Projektlaufzeit wurde auf drei Jahre angesetzt die Datenerfassung für das Monitoring sollte dabei mindestens 2 Jahre betragen.
Encapsulant-free N.I.C.E. modules have strong ecological advantages compared to conventional laminated modules but suffer generally from lower electrical performance. Via long-term outdoor monitoring of fullsize industrial modules of both types with identical solar cells, we investigated if the performance difference remains constant over time and which parameters influence its value. After assessing about a full year’s data, two obvious levers for N.I.C.E. optimization are identified: The usage of textured glass and transparent adhesives on the module rear side. Also, the performance loss could be alleviated using tracking systems due to lower AOI values. Our measurements show additionally that N.I.C.E. module surfaces are in average about 2.5°C cooler compared to laminated modules. With these findings, we lay out a roadmap to reduce today’s LIV gap of about 5%rel by different optimizations.
Die Digitalisierung kann der Türöffner sein, um effizient die mittelständische Industrie und den Energiemarkt zu verbinden. Das Projekt GaIN hat das Ziel, mit hochaufgelösten Produktions- und Messdaten von zehn mittelständischen Industriebetrieben neuartige Tarife und angepasste Marktplattformen zu entwickeln, die Prognosegüte für Energiebedarf, Nachfrage und Flexibilitätsverfügbarkeit zu erhöhen, die Interaktion vieler flexibler Unternehmen im Verteilnetz und in dem Bilanzkreis zu bewerten und die Auswirkung einer Nutzung der Daten auf die Energiewende anhand einer Systemanalyse zu beurteilen.
The twin concept is increasingly used for optimization tasks in the context of Industry 4.0 and digitization. The twin concept can also help small and medium-sized enterprises (SME) to exploit their energy flexibility potential and to achieve added value by appropriate energy marketing. At the same time, this use of flexibility helps to realize a climate-neutral energy supply with high shares of renewable energies. The digital twin reflects real production, power flows and market influences as a computer model, which makes it possible to simulate and optimize on-site interventions and interactions with the energy market without disturbing the real production processes. This paper describes the development of a generic model library that maps flexibility-relevant components and processes of SME, thus simplifying the creation of a digital twin. The paper also includes the development of an experimental twin consisting of SME hardware components and a PLC-based SCADA system. The experimental twin provides a laboratory environment in which the digital twin can be tested, further developed and demonstrated on a laboratory scale. Concrete implementations of such a digital twin and experimental twin are described as examples.
In this paper we report on further success of our work to develop a multi-method energy optimization which works with a digital twin concept. The twin concept serves to replicate production processes of different kinds of production companies, including complex energy systems and test market interactions to then use them for model predictive optimizing. The presented work finally reports about the performed flexibility assessment leading to a flexibility audit with a list of measures and the impact of energy optimizations made related to interactions with the local power grid i.e., the exchange node of the low voltage distribution grid. The analysis and continuous exploration of flexibilities as well as the exchange with energy markets require a “guide” leading to continuous optimization with a further tool like the Flexibility Survey and Control Panel helping decision-making processes on the day-ahead horizon for real production plants or the investment planning to improve machinery, staff schedules and production
infrastructure.
In this paper, a new method is demonstrated for online remote simulation of photovoltaic systems. The required communication technology for the data exchange is introduced and the methods of PV generator parameter extraction for the simulation models are analysed. The method shown for parameter extraction from the manufacturer data is especially useful for the commissioning procedure, where the measured installed power is transferred to standard test conditions using the simulation model and can then be easily compared with the design power. At a simulation accuracy of 2% using the software environment INSEL ® any problems with the PV generator can reliably be detected. Online simulation of a grid connected PV generator is then carried out during the operation of the photovoltaic plant. The visualisation includes both the monitored and the simulated online data sets, so that a very efficient fault detection scheme is available. The method is implemented and validated on several grid connected photovoltaic power plants in Germany. It is excellently suited to provide automatic and real time fault detection and significantly improve the commissioning procedure for photovoltaic plants of all sizes.