Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (3)
Has Fulltext
- no (3)
Is part of the Bibliography
- yes (3)
Keywords
- Diode-array detection (1)
- Dünnschichtchromatographie (1)
- Faseroptik (1)
- Mikrowellentechnik (1)
- Reflectance (1)
- Scanner (1)
- Systematic and statistical errors (1)
- TLC (1)
Institute
Open Access
- Closed (2)
- Closed Access (1)
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows a lot of advantages and options in comparison to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. Using fiber-optic elements for controlled light-guiding, the TLC-method was significantly improved: the new HPTLC-system is able to measure simultaneously at different wavelengths without destroying the plate surface or the analytes on the surface. For registration of the sample distribution on a HPTLC-plate we developed a new and sturdy diode-array HPTLC- scanner which allows registration of spectra on the TLC- plates in the range of 198 nm to 610 nm with a spectral resolution better than 1.2 nm. The spatial resolution on plate is better than 160 micrometers . In the spectral mode, the new HPTLC-scanner delivers much more information than the commonly used TLC-scanner. The measurement of 450 spectra of one separation track does not need more than three minutes. However, in the fixed wavelength mode the contour plot can be measured within 15 seconds. In this case, the signal will be summarized and averaged over a spectral range having FWHM from 10 nm to 25 nm depending on the substance under test. The new diode-array HPTLC-scanner makes various chemometric applications possible. The new method can be used easily in clinical diagnostic systems easily, e.g. for blood and uring investigations. In addition, new applications are possible. For example, the rich structured PAHs were studied. Although the separation is incomplete the 16 compounds can be quantified using suitable wavelengths.
A new diode-array scanner in combination with a computer-controlled application system meets all the demands of modern HPTLC measurement. Automatic application, simultaneous measurements at different wavelengths, and different linearization models enable appropriate evaluation of all analytical questions. The theory of error propagation recommends quantification at reflectance values smaller than 0.8; this can be verified only by use of diode-array scanning. The same theory also recommends quantification by use of peak height data, because the theory predicts best precision only for peak height evaluation. Diode-array scanning with reflectance monitoring enables appropriate validation in TLC and HPTLC analysis. All these aspects result in substantial improvement of in-situ quantitative densitometric analysis, and simultaneous recording at different wavelengths opens the way for chemometric evaluation, e.g. peak purity monitoring, which improves the accuracy and reliability of HPTLC analysis.
In thin-layer chromatography, fiber-bundle arrays have been introduced for spectral absorption measurements in the UV-region. Using all-silica fiber bundles, the exciting light will be detected after re-emission on the plate with a fiberoptic spectrometer. In addition, fluorescence light can be detected which will be masked by the re-emitted light. Therefore, it is helpful to separate the absorption and fluorescence on the TLC-plate. A modified three-array assembly has been developed: using one array for detection, the two others are used for excitation with broadband band deuterium-light and with UV-LEDs adjusted to the substances under test. As an example, the quantification of glucosamine in nutritional supplements or spinach leaf extract will be described. Using simply heating of the amino-plate for derivation, the reaction product of Glucosamine can be detected sensitively either by light absorption or by fluorescence, using the new fiber-optic assembly. In addition, the properties of the new 3-row fiber-optic array and the commercially available UV-LEDs will be shown, in the interesting wavelength region for excitation of fluorescence, from 260 nm to 360 nm. The squint angle having an influence on coupling efficiency and spatial resolution will be measured with the inverse farfield method. Some properties of UV-LEDs for analytical applications will be described and discussed, too.