Refine
Year of publication
Document Type
- Patent (18)
- Conference Proceeding (15)
- Article (reviewed) (10)
- Contribution to a Periodical (4)
Conference Type
- Konferenz-Abstract (12)
- Konferenz-Poster (2)
- Konferenzartikel (1)
Language
- English (27)
- German (16)
- Other language (4)
Is part of the Bibliography
- yes (47)
Keywords
Institute
Open Access
- Open Access (44)
- Bronze (15)
- Gold (7)
- Closed Access (3)
Decrease of non-responder rate is the main chal-lenge in cardiac resynchronization therapy. The problem could be solved, partly, in the follow-up by consequent indi-vidualization of hemodynamic pacing parameters. The eso-phageal electrogram feature of the Biotronik ICS 3000 programmer was used in the follow-up of 20 heart failure patients carrying implants for cardiac resynchronization therapy. Adverse hemodynamic programming of the sensed and paced AV delay could be easily observed and replaced by the individual optimal duration in 3 patients (15%) VDD and DDD operation.This result proves the value of esophageal electrogram recording CRT follow-up.
Background: A disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His bundle pacing.
Methods: Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. This conventional type of biventricular pacing leads to a reduction of the left ventricular ejection fraction. Furthermore, the non-responder rate of the CRT therapy is about one third of the CRT patients.
Results: His bundle pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the His bundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1.5 V in combination with a pacing pulse duration of 1 ms.
Conclusions: Compared to conventional cardiac pacemaker pacing, His bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.
Die transösophageale Neurostimulation ist eine neue Therapieform und könnte unter anderem zur Schmerzlinderung während einer transösophagealen Linksherzstimulation angewendet werden. Sie ist in die Kategorie der Rückenmarksstimulation (SCS) einzuordnen, die die meist verwendete Technik der Neurostimulation ist. Die derzeit auf dem Markt vorhandenen Ösophaguskatheter werden bei einer elektrophysiologischen Untersuchung mit Ablation und transösophagealer Echokardiographie zur Temperaturüberwachung eingesetzt. Das Ziel dieser Arbeit war, das vorhandene Offenburger Herzrhythmusmodell, um die Wirbelsäule zu erweitern, einen neuen Ösophagus-Elektroden- Katheter für die transösophageale elektrische Stimulation des Rückenmarks zu modellieren und mittels 3D-Computer-Simulationen auf Ihre Wirksamkeit zu untersuchen.
Um medizinische Behandlungsverfahren in der Praxis besser verstehen und anwenden zu können, gewinnt die Visualisierung der Prozesse an immer größerer Bedeutung. Durch Anwendung der Computer-Simulationssoftware CST können elektromagnetische und thermische Simulationen zur Analyse verschiedener Herzrhythmusstörungen durchgeführt werden. Eine weitere Form der Visualisierung erfolgt durch haptische, dreidimensionale Druckmodelle. Diese Modelle können mit einem generativen Herstellungsverfahren, wie z. B. einem 3D-Drucker, in kürzester Zeit hergestellt werden.
The high frequency (HF) catheter ablation is the gold standard for the therapy of many cardiac tachyarrhythmias, such as atrioventricular node re-entry tachycardia (AVNRT), atrioventricular re-entry tachycardia (AVRT) or atrial flutter (AFL). The aim of the study was to simulate the HF ablation of AVNRT, AVRT, AFL and its heat propagation in reference to the supplied power with different electrode material and electrode size. The modeling and simulation were performed with the thermal and electromagnetic simulation software CST® (Computer Simulation Technology, Darmstadt). The modeling and simulation were carried out using ablation catheters with 4 mm tip electrode and 8 mm tip electrode with different electrode materials. Both electrode types were made of platinum and gold respectively. For the measurement of the heat propagation in the heart tissue, the catheters were integrated in the Offenburg heart rhythm model. The HF ablation procedures were performed with the 4 mm platinum tip electrode, with an application duration of 45 seconds and a power output of 40 watts. The HF ablation of the atrioventricular node slow pathway produced a maximum temperature of 66.33 °C. The Kent bundle HF ablation in the left atrium achieved a maximum temperature of 67.14 °C. The HF ablation of the right atrial isthmus resulted 65.96 °C. The 8 mm distal platinum tip electrode and a power output of 60 watts reached 72.85 °C. The 8 mm distal gold tip electrode and a power output of 60 watt reached 64.66 °C, due to the improved thermal conductivity of gold. Virtual heart and ablation electrode models allow the static and dynamic simulation of HF ablation with different electrode material and electrode size. The 3D simulation of the temperature profile may be used to optimize the AVNRT, AVRT and AFL HF ablation.
Abstract: Electric field of biventricular (BV) pacing, left ventricular (LV) electrode position and electrical interventricular desynchronization are important parameters for successful cardiac resynchronization therapy (CRT) in patients with heart failure, sinus rhythm and reduced LV ejection fraction. The aim of the study was to evaluate electric pacing field of transesophageal left atrial (LA) pacing and BV pacing with 3D heart rhythm simulation. Bipolar right atrial (RA), right ventricular (RV), LV electrodes and multipolar hemispherical esophageal LA electrodes were modeled with CST (Computer Simulation Technology, Darmstadt). Electric pacing field were simulated with bipolar RA and RV pacing with Solid S (Biotronik) electrode, bipolar LV pacing with Attain 4194 (Medtronic) electrode and bipolar LA pacing with TO8 (Osypka) esophageal electrode. 3D heart rhythm model with esophagus allowed electric pacing field simulation of 4-chamber pacing with bipolar intracardiac RA, RV, LV pacing and bipolar transesophageal LA pacing. The pacing amplitudes were 3V RA pacing amplitude, 50V LA pacing amplitude, 1.5V RV pacing amplitude and 3V LV pacing amplitude with 0.5ms pacing pulse duration. The atrioventricular delay between RA pacing and BV pacing was 140ms atrioventricular pacing delay and simultaneous RV and LV pacing. Electric pacing fields were simulated during the different pacing modes AAI, VVI, DDD and DDD0V. The intracardiac far-field pacing potentials were evaluated with intracardiac electrodes and a distance of 1mm from the electrodes with RA electrode 1.104V, RV electrode 0.703V and LV electrode 1.32V. The transesophageal far-field pacing potential was evaluated with transesophageal electrode and a distance of 10mm from the elelctrode with LA electrode 6.076V. Heart rhythm model simulation with esophagus allows evaluation of electric pacing fields in AAI, VVI, DDD, DDD0V and DDD0D pacing modes. Electric pacing field of RA, RV and LV pacing in combination with LA pacing may additional useful pacing mode in CRT non-responders.
Pulmonary vein isolation (PVI) is a common therapy in atrial fibrillation (AF). The cryoballoon was invented to isolate the pulmonary vein in one step and in a shorter time than a point-by-point radiofrequency (RF) ablation. The aim of the study was to model two cryoballoon catheters, one RF catheter and to integrate them into a heart rhythm model for the static and dynamic simulation of PVI by cryoablation and RF ablation in AF. The modeling and simulation were carried out using the electromagnetic and thermal simulation software CST (CST, Darmstadt). Two cryoballons and one RF ablation catheter were modeled based on the technical manuals of the manufacturers Medtronic and Osypka. The PVI especially the isolation of the left inferior pulmonary vein using a cryoballoon catheter was performed with a -50 °C heatsource and an exponential signal. The temperature at the balloon surface was -50 °C after 20 s ablation time, -24 °C from the balloon 0,5 mm in the myocardium, at a distance of 1 mm -3 °C, at 2 mm 18 °C and at a distance of 3mm 29 °C. PVI with RF energy was simulated with an applied power of 5 W at 420 kHz at the distal 8 mm ablation electrode. The temperature at the tip electrode was 110 °C after 15 s ablation time, 75 °C from the balloon at 0,5 mm in the myocardium, at a distance of 1 mm 58 °C, at 2 mm 45 °C and at a distance of 3 mm 38 °C. Virtual heart rhythm and catheter models as well as the simulation of the temperature allow the simulation of PVI in AF by cryo ablation and RF ablation. The 3D simulation of the temperature profile may be used to optimize RF and cryo ablation.
Cardiac contractility modulation (CCM) is a device-based therapy for the treatment of systolic left ventricular chronic heart failure. Unlike other device-based therapies for heart failure, CCM delivers non-excitatory pacing signals to the myocardium. This leads to an extension of the action potential and to an improved contractility of the heart. The modeling and simulation was done with the electromagnetic simulation software CST. Three CCM electrodes were inserted into the Offenburg heart rhythm model and subsequently simulated the electric field propagation in CCM therapy.
In addition, simulations of CCM have been performed with electrodes from other device-based therapies, such as cardiac resynchronization therapy (CRT) and implantable cardioverter / defibrillator (ICD) therapy. At the same distance to the simulation electrode, the electric field is slightly stronger in CCM therapy than in CCM therapy with additionally implanted CRT or ICD electrodes. In addition, there is a change in the electric field propagation at the electrodes of the CRT and the shock electrode of the ICD.
By simulating several different therapy procedures on the heart, it is possible to check how they affect their behavior during normal operation. CCM heart rhythm model simulation allows the evaluation the individual electrical pacing and sensing field during CCM.
Hintergrund: Die Pulmonalvenenisolation (PVI) mit Hilfe von Kryoballonkathetern ist eine anerkannte Methode zur Behandlung von Vorhofflimmern (AF). Diese Methode bietet eine kürzere Behandlungsdauer als die klassische Therapie durch die Hochfrequenzablation (HF). Ziel dieser Studie war es, verschiedene Kryoballonkatheter, HF-Katheter und Ösophaguskatheter in ein Herzrhythmusmodell zu integrieren und mittels statischer und dynamischer Simulation elektrische und thermische Felder bei PVI unter Vorhofflimmern zu untersuchen.
Methodik: Die Modellierung und Simulation erfolgte mit der elektromagnetischen und thermischen Simulationssoftware CST (CST Darmstadt). Zwei Kryoballons, ein HF-Ablationskatheter und ein Ösophaguskatheter wurden auf der Grundlage der technischen Handbücher der Hersteller Medtronic und Osypka modelliert. Der 23 mm Kryoballon und ein kreisförmiger Mappingkatheter wurden in das Offenburger Herzrhythmusmodell integriert, insbesondere die left inferior pulmonary vein (LIPV) zur Simulation der thermischen Feldausbreitung während einer PVI. Die Simulation einer PVI mit HF-Energie wurde mit dem integrierten HF-Ablationskatheter in der Nähe der LIPV durchgeführt. Der im Herzrhythmusmodell platzierte TO8 Ösophaguskatheter ermöglichte die Ableitung linksatrialer elektrischer Felder bei AF und die Analyse thermischer Felder während PVI.
Ergebnisse: Elektrische Felder konnten bei Sinusrhythmus und AF mit einem AF-Fokus in der LIVP statisch und dynamisch im Herzen und Ösophagus simuliert werden. Bei einer simulierten 20 Sekunden Applikation eines Kryoballon-Katheters bei -50°C wurde eine Temperatur von -24°C in einer Tiefe von 0,5 mm im Myokard gemessen. In einer Tiefe von 1 mm betrug die Temperatur -3°C, bei 2 mm Tiefe 18°C und bei 3 mm Tiefe 29°C. Unter der 15 sekündigen Anwendung eines HF-Katheters mit einer 8-mm-Elektrode und einer Leistung von 5 W bei 420 kHz betrug die Temperatur an der Spitze der Elektrode 110°C. In einer Tiefe von 0,5 mm im Myokard betrug die Temperatur 75°C, in einer Tiefe von 1 mm 58°C, in einer Tiefe von 2 mm 45°C und in einer Tiefe von 3 mm 38°C. Im Ösophagus konnte bei den meisten Simulationen eine konstante Temperatur von 37°C gemessen und die Gefahr einer Ösophagus-Fistel ausgeschlossen werden. Bei Kryoablation der LIPV wurde eine Abkühlung des Ösophagus auf 30°C gemessen.
Schlussfolgerungen: Die Herzrhythmussimulation elektrischer und thermaler Felder ermöglichen mit Anwendung unterschiedlicher Herzkatheter eine statische und dynamische Simulation von PVI durch Kryoablation, HF-Ablation und Temperaturanalyse im Ösophagus. Unter Einbeziehung von MRT- oder CT-Daten können elektrische und thermale Simulationen möglicherweise zur Optimierung von PVIs genutzt werden.