Refine
Document Type
Conference Type
- Konferenz-Abstract (3)
- Konferenzartikel (3)
Language
- English (8)
Has Fulltext
- no (8)
Is part of the Bibliography
- yes (8)
Keywords
Open Access
- Open Access (5)
- Closed Access (3)
Cardiac resynchronization therapy is an established therapy for heart failure patients. The aim of the study was to evaluate electrical left cardiac atrioventricular delay and interventricular desynchronization in sinus rhythm cardiac resynchronization therapy responder and non-responder. Cardiac electrical desynchronization were measured by surface ECG and focused transesophageal bipolar left atrial and left ventricular ECG before implantation of cardiac resynchronization therapy defibrillators. Preoperative electrical cardiac desynchronization was 195.7 ± 46.7 ms left cardiac atrioventricular delay and 74.8 ± 24.5 ms interventricular delay in cardiac resynchronization therapy responder. Cardiac resynchronization therapy responder New York Heart Association class improved during long term biventricular pacing. Transesophageal left cardiac atrioventricular delay and interventricular delay may be additional useful parameters to improve patient selection for cardiac resynchronization therapy.
Transthoracic impedance cardiography (ICG) is a non-invasive method for determination of hemodynamic parameters. The basic principle of transthoracic ICG is the measurement of electrical conductivity of the thorax over the time. The aim of the study was the analysis of hemodynamic parameters from healthy individuals and the evaluation of various hemodynamic monitoring devices. Fourteen men (mean age 25 ± 4.59 years) and twelve women (mean age 24 ± 3.5 years) were measured during the cardiovascular engineering laboratory at Offenburg University of Applied Sciences, Offenburg, Germany. The ICG recordings were measured with the devices CardioScreen 1000, CardioScreen 2000 and TensoScreen with the corresponding Software Cardiovascular Lab 2.5 (Medis Medizinische Messtechnik GmbH, Illmenau, Germany). In order to create identical frame conditions, all measurements were recorded in the same position and for the same duration. Various positions were simulated from horizontal lying position to vertical standing position. Altogether, more than 30 hemodynamic parameters were measured.
Cardiac resynchronization therapy (CRT) is an established class I level A biventricular pacing therapy in chronic heart failure patients with left bundle branch block and reduced left ventricular ejection fraction, but not all patients improved clinically. Purpose of the study was to evaluate electrical interatrial conduction delay (IACD) to interventricular conduction delay (IVCD) ratio with focused transesophageal left atrial and left ventricular electrocardiography.
Methods: Thirty eight chronic heart failure patients (age 63.4±10.2 years; 3 females, 35 males) with New York Heart Association (NYHA) functional class 3.0±0.2 and 171.71±36.17ms QRS duration were analysed using posterior left atrial and left ventricular transesophageal electrocardiography with hemispherical electrodes before CRT. Electrical IACD was measured between onset of P-wave in the surface ECG and onset of left atrial signal. Electrical IVCD was measured between onset of QRS complex in the surface ECG and onset of left ventricular signal.
Results: Electrical IACD and IVCD could be evaluated by transesophageal left atrial and left ventricular electrocardiography in all heart failure patients with correlation to 1.18±0.92 IACD-IVCD-ratio (r=-0.57, P<0.001; r=0.66, P<0.001). There were 32 CRT responder with reduction of NYHA class from 3.0±0.22 to 1.97±0.31 (P<0.001) during 16.5±18.9 month CRT with 75.19±33.49ms IACD, 78.91±24.73ms IVCD, 1.04±0.66 IACD-IVCD-ratio and correlation between IACD and IACDIVCD- ratio (r=0.84, P<0.001). There were 6 CRT nonresponder with no reduction of NYHA class from 3.0±0.3 to 2.9±0.5 during 14.3±13.7 month biventricular pacing, 50.0±28.26ms IVCD (P=0.014), 1.92±1.65 IACD-IVCD-ratio (P=0,029) and correlation between 67.0±24.9ms IACD and IACD-IVCD-ratio (r=0.85, P=0.031).
Conclusions: Focused transesophageal left atrial and left ventricular electrocardiography can be utilized to analyse electrical IACD and IVCD in heart failure patients. IACDIVDC- ratio may be a useful parameter to evaluate electrical left cardiac desynchronization in heart failure patients.
Cardiac resynchronization therapy (CRT) is an established biventricular pacing therapy in heart failure patients with left bundle branch block and reduced left ventricular ejection fraction, but not all patients improved clinically as CRT responder. Purpose of the study was to evaluate electrical left atrial conduction delay (LACD) with focused transesophageal electrocardiography in CRT responder and CRT non-responder.
Methods: Twenty heart failure patients (age 66.6±8.2 years; 2 females, 18 males) with New York Heart Association functional class 3.0±0.3 and 174.2±40.2ms QRS duration were analysed using posterior left atrial transesophageal electrocardiography with hemispherical electrodes. Electrical LACD was measured between onset and offset of transesophageal left atrial signal before implantation of CRT devices.
Results: Electrical LACD could be evaluated by bipolar transesophageal left atrial electrocardiography using TO Osypka electrode in all heart failure patients with negative correlation between 54.7±18.1ms LACD and 24.9±6.4% left ventricular ejection fraction (r=-0.65, P=0.002). There were 16 CRT responders with reduction of New York Heart Association functional class from 3.0±0.29 to 2.1±0.2 (r=0.522, P=0.038) during 9.41±10.96 month biventricular pacing and negative correlation between 49.6±14.2ms LACD and 26.0±6.2% left ventricular ejection fraction (r=-0.533, P=0.034). There were 4 CRT non-responders with no reduction of New York Heart Association functional class from 3.0±0.4 to 2.8±0.5 (r=0.816, P=0.184) during with 13.88±16.39 month biventricular pacing and no correlation between 75.25±19.17ms LACD and 20.75±6.4% left ventricular ejection fraction (r=-0.831, P=0.169).
Conclusions: Focused transesophageal left atrial electrocardiography can be utilized to analyse electrical LACD in heart failure patients. LACD correlated negative with left ventricular ejection fraction in CRT responders. LACD may be a useful parameter to evaluate electrical left atrial desynchronization in heart failure patients.
Targeting complex fractionated atrial electrocardiograms by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies and catheter ablation of atrial fibrillation and ventricular tachycardia. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique.
Methods: Signal averaging electrocardigraphy allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm use automatic ECG trigger function for signal averaged transthoracic, transesophageal and intra-cardiac ECG signals with novel LabVIEW software.
Results: The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. We evaluated atrial flutter in the time domain with two-to-one atrioventricular conduction, 212.0 ± 4.1 ms atrial cycle length, 426.0 ± 8.2 ms ventricular cycle length, 58.2 ± 1.8 ms P-wave duration, 119.6 ± 6.4 ms PQ duration, 103.0 ± 2.4 ms QRS duration and 296.4 ± 6.8 ms QT duration. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex.
Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can be utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial and ventricular electrocardiograms may be useful parameters to evaluate electrical cardiac bradycardia and tachycardia signals in atrial fibrillation and ventricular tachycardia ablation.
Cardiac resynchronization therapy (CRT) is an established therapy for heart failure patients and improves quality of life in patients with sinus rhythm, reduced left ventricular ejection fraction (LVEF), left bundle branch block and wide QRS duration. Since approximately sixty percent of heart failure patients have a normal QRS duration they do not benefit or respond to the CRT. Cardiac contractility modulation (CCM) releases nonexcitatoy impulses during the absolute refractory period in order to enhance the strength of the left ventricular contraction. The aim of the investigation was to evaluate differences in cardiac index between optimized and nonoptimized CRT and CCM devices versus standard values. Impedance cardiography, a noninvasive method was used to measure cardiac index (CI), a useful parameter which describes the blood volume during one minutes heart pumps related to the body surface. CRT patients indicate an increase of 39.74 percent and CCM patients an improvement of 21.89 percent more cardiac index with an optimized device.
In contrast to conventional aortic valve replacement, the Transcatheter Aortic Valve Implantation (TAVI) is a new highly specialist alternative to surgical valve replacement for patients with symptomatic severe aortic stenosis and high operative risk. The procedure was performed in a minimally invasive way and was introduced at the university heart centre, Freiburg – Bad Krozingen in 2008. The results have been getting better and better over the years. The aim of the investigation is the analysis of electrocardiogram conduction time and the electrocardiography changes recorded hours and days after the procedure depending on artificial heart valve models, which may lead to pacemaker implantation, even the analysis of the effectiveness of treatment.
Spectral analysis of signal averaging electrocardiography in atrial and ventricular tachyarrhythmias
(2017)
Background: Targeting complex fractionated atrial electrograms detected by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique.
Methods: Signal averaging electrocardiography (ECG) allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm uses automatic ECG trigger function for signal averaged transthoracic, transesophageal and intracardiac ECG signals with novel LabVIEW software (National Instruments, Austin, Texas, USA). For spectral analysis we used fast fourier transformation in combination with spectro-temporal mapping and wavelet transformation for evaluation of detailed information about the frequency and intensity of high frequency atrial and ventricular signals.
Results: Spectral-temporal mapping and wavelet transformation of the signal averaged ECG allowed the evaluation of high frequency fractionated atrial signals in patients with atrial fibrillation and high frequency ventricular signals in patients with ventricular tachycardia. The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex. The combination of analysis in the time and frequency domain allowed the evaluation of fractionated signals during atrial and ventricular conduction.
Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial electrograms may be useful parameters to evaluate electrical cardiac arrhythmogenic signals in atrial fibrillation ablation.