Refine
Document Type
- Conference Proceeding (2)
- Bachelor Thesis (1)
Conference Type
- Konferenzartikel (2)
Keywords
- Energy Harvesting (1)
- Low-Cost Füllstandssensor (1)
- Smart Gardening (1)
- Smart Home (1)
- Wireless Sensor Nodes (1)
- building management systems (1)
- energy harvesting (1)
- home automation (1)
- irrigation (1)
- wireless sensor networks (1)
Institute
Open Access
- Open Access (2)
- Closed Access (1)
Smart Home or Smart Building applications are a growing market. An increasing challenge is to design energy efficient Smart Home applications to achieve sustainable and green homes. Using the example of the development of an Indoor Smart Gardening system with wireless monitoring and automated watering this paper is discussing in particular the design issue of energy autonomous working sensors and actuators for home automation. Most important part of the presented Smart Gardening system is a 3D printed smart flower pot for single plants. The smart flower pot has integrated a water reservoir for automated plant irrigation and an electronic for monitoring important plant parameters and the water level of the water reservoir. Energy harvesting with solar cells enables energy autonomous working of the flower pot. A low-power wireless interface also integrated in the flowerpot and an external gateway based on a Raspberry Pi 3 enables wireless networking of multiple of those flower pots. The gateway is used for evaluating the plant parameters and as a user interface. Particularly the architecture of the energy autonomous wireless flower pot will be considered, because fully energy autonomous sensors and actuators for home automation could not be implemented without special concepts for the energy supply and the overall electronic.
Smart Home-/Smart-Building-Anwendungen sind ein stetig wachsender Markt. Smart Gardening ist ein Beispiel dafür, Nutzern mehr Komfort und eine bessere Lebensqualität zu Hause oder in Bürogebäuden zu ermöglichen. Im Rahmen dieses Beitrags wird die Entwicklung eines Indoor-Smart-Gardening-Systems mit dem Fokus auf energieautarkes Arbeiten vorgestellt. Herzstück des Systems ist ein 3D-gedruckter Blumentopf für einzelne Pflanzen mit integrierter Elektronik zum Monitoring der wichtigsten Pflanzenparameter und einem integrierten Wasserreservoir mit Tauchpumpe für das automatisierte Bewässern der Pflanze. Energy Harvesting per Solarzellen ermöglicht ein energieautarkes Arbeiten des Blumentopfes. Eine selbstentwickelte Low-Power-Funkschnittstelle im Blumentopf und ein externes Gateway ermöglichen die drahtlose Vernetzung mehrerer Pflanzen. Das Gateway dient zur Auswertung der Pflanzenparameter, der Ansteuerung der im Netzwerk vorhandenen Blumentöpfe und als Benutzerinterface.
Die vorliegende Bachelor-Thesis befasst sich mit der Thematik, eine drahtlose Energieübertragung mit Hilfe induktiv resonanter Kopplung zu simulieren und aufzubauen. Durch die in den letzten Jahren immer größer werdende Elektromobilität steigt auch das Interesse an einem drahtlosen Transfer von elektrischem Strom. Doch auch in kleineren Leistungsbereichen ist ein drahtloses Aufladen, wie z.B. bei Laptops und Handys, ein angesagtes Thema. Mit Hilfe von zwei resonanten Schwingkreisen wird ein Austausch an Energie zwischen Sender- und Empfängerschwingkreis demonstriert. Die Grundlagen der magnetischen Induktion wie auch die Grundlagen von elektrischen Schwingkreisen sind hierfür essentiell und werden in dem ersten Kapitel aufgegriffen. Durch das Aufstellen eines mathematischen Modells, im zweiten Kapitel, wird das Prinzip der magnetischen Kopplung und das Phänomen der Frequenzspaltung von gekoppelten Systemen ausführlich behandelt und aufgestellt. Spider-Web Spulen, welche schon in niedrigen Frequenzbereichen hohe Güten aufweisen können, werden für den folgenden Aufbau verwendet. In den darauf folgenden Kapiteln wird das über das Magnetfeld gekoppelte System ausführlich untersucht. Das System erzielt eine Leistungsübertragung von 20W über 30 cm mit einer Effizienz von ungefähr 52%. Des Weiteren konnte der Punkt der kritischen Kopplung, durch eine Verminderung der ohmschen Last im Sendeschwingkreis, auf 50 cm gelegt werden.