Refine
Year of publication
- 2017 (2)
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Institute
Open Access
- Closed Access (2)
The Bluetooth community is in the process to develop mesh technology. This is highly promising as Bluetooth is widely available in Smart Phones and Tablet PCs, allowing an easy access to the Internet of Things. In this paper work, we investigate the performance of Bluetooth enabled mesh networking that we performed to identify the strengths and weaknesses. A demonstrator for this protocol has been implemented by using the Fruity Mesh protocol implementation. Extensive test cases have been executed to measure the performance, the reliability, the power consumption and the delay. For this, an Automated Physical Testbed (APTB), which emulates the physical channels has been used. The results of these measurements are considered useful for the real implementation of Bluetooth; not only for home and building automation, but also for industrial automation.
IPv6 over resource-constrained devices (6Lo) emerged as a de-facto standard for the Internet of Things (IoT) applications especially in home and building automation systems. We provide results of an investigation of the applicability of 6LoWPAN with RPL mesh networks for home and building automation use cases. The proper selection of Trickle parameters and neighbor reachable time-outs is important in the RPL protocol suite to respond efficiently to any path failure. These parameters were analyzed in the context of energy consumption w.r.t the number of control packets. The measurements were performed in an Automated Physical Testbeds (APTB). The results match the recommendation by RFC 7733 for selecting various parameters of RPL protocol suite. This paper shows the relationship between various RPL parameters and control traffic overhead during network rebuild. Comparative measurement results with Bluetooth Low Energy (BLE) in this work showed that 6Lo with RPL outperformed BLE in this use case with less control traffic overheads.