Refine
Document Type
Conference Type
- Konferenz-Abstract (14)
- Konferenzartikel (4)
- Sonstiges (2)
Is part of the Bibliography
- yes (23)
Keywords
- Abtragung (6)
- Hochfrequenztechnik (3)
- Medizintechnik (3)
- Herz (2)
- Herzrhythmusstörung (2)
- Hochfrequenz (2)
- Bestrahlung (1)
- CRT (1)
- Defibrillation (1)
- Defibrillator (1)
Institute
Open Access
- Open Access (15)
- Closed Access (6)
- Closed (2)
- Bronze (1)
Commercial simulators can only reproduce electrocardiograms (ECG) of the normal and diseased heart rhythm in a simplified waveform and with a low number of channels. With the presented project, the variety of digitally archived ECGs, recorded during electrophysiological examinations, should be made usable as original analogue signals for research and teaching purposes by the development of a special printed circuit board for the mini-computer “Raspberry-Pi “.
Cardiac resynchronisation therapy (CRT) is a promising treatment option in patients with chronic heart failure. In this article the roles of semi-invasive esophageal left-heart electrocardiography and functional cardiac nuclear imaging in the field of CRT are highlighted, as the combination of both could be a favourable diagnostic approach in special cardiac situations. Also original esophageal left heart electrogram data of exemplary CRT patients is presented.
In cardiac resynchronization therapy (CRT) for heart failure, individualization of the AV delay is essential to improve hemodynamics and to minimize non-responder rate. In patients in sinus rhythm having additional disposition to bradycardia, optimization is necessary for both situations, atrial sensing and pacing. Therefore, echo-optimization is the goldstandard but time consuming. Unfortunately, it depends on the particular CRT systems parameter set if the resulting individually optimal AV delays can be programmed or not. Some CRT systems provide a set of AV delays for DDD operation combined with a set of the pace-sense-compensation to optimize the AV delay in DDD and VDD operation. The pace-sense-compensation (PSC) can be defined by the difference of implant-related interatrial conduction intervals in DDD and VDD operation measured in the esophageal left atrial electrogram. In a cohort of 96 CRT patients we found mean PSC of 59-35ms ranging between 0-143ms. As a consequence, allowing 10ms tolerance, AVD optimization is completely impossible in one of the two modes, VDD or DDD operation, in 34 (35%) or 5 (5%) patients with implants restricting the PSC range to 60ms or 100ms, respectively. Thus, we propose companies to provide CRT systems with programmable pace-sense- compensation between 0ms and 150ms.
Decrease of non-responder rate is the main chal-lenge in cardiac resynchronization therapy. The problem could be solved, partly, in the follow-up by consequent indi-vidualization of hemodynamic pacing parameters. The eso-phageal electrogram feature of the Biotronik ICS 3000 programmer was used in the follow-up of 20 heart failure patients carrying implants for cardiac resynchronization therapy. Adverse hemodynamic programming of the sensed and paced AV delay could be easily observed and replaced by the individual optimal duration in 3 patients (15%) VDD and DDD operation.This result proves the value of esophageal electrogram recording CRT follow-up.