Refine
Document Type
Conference Type
- Konferenzartikel (5)
Language
- English (8)
Has Fulltext
- no (8)
Is part of the Bibliography
- yes (8)
Keywords
Institute
Open Access
- Open Access (6)
- Closed Access (2)
- Bronze (1)
Generative adversarial networks are the state of the art approach towards learned synthetic image generation. Although early successes were mostly unsupervised, bit by bit, this trend has been superseded by approaches based on labelled data. These supervised methods allow a much finer-grained control of the output image, offering more flexibility and stability. Nevertheless, the main drawback of such models is the necessity of annotated data. In this work, we introduce an novel framework that benefits from two popular learning techniques, adversarial training and representation learning, and takes a step towards unsupervised conditional GANs. In particular, our approach exploits the structure of a latent space (learned by the representation learning) and employs it to condition the generative model. In this way, we break the traditional dependency between condition and label, substituting the latter by unsupervised features coming from the latent space. Finally, we show that this new technique is able to produce samples on demand keeping the quality of its supervised counterpart.
Generative adversarial networks are the state of the art approach towards learned synthetic image generation. Although early successes were mostly unsupervised, bit by bit, this trend has been superseded by approaches based on labelled data. These supervised methods allow a much finer-grained control of the output image, offering more flexibility and stability. Nevertheless, the main drawback of such models is the necessity of annotated data. In this work, we introduce an novel framework that benefits from two popular learning techniques, adversarial training and representation learning, and takes a step towards unsupervised conditional GANs. In particular, our approach exploits the structure of a latent space (learned by the representation learning) and employs it to condition the generative model. In this way, we break the traditional dependency between condition and label, substituting the latter by unsupervised features coming from the latent space. Finally, we show that this new technique is able to produce samples on demand keeping the quality of its supervised counterpart.
Estimating the Robustness of Classification Models by the Structure of the Learned Feature-Space
(2022)
Over the last decade, the development of deep image classification networks has mostly been driven by the search for the best performance in terms of classification accuracy on standardized benchmarks like ImageNet. More recently, this focus has been expanded by the notion of model robustness, \ie the generalization abilities of models towards previously unseen changes in the data distribution. While new benchmarks, like ImageNet-C, have been introduced to measure robustness properties, we argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions. To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space. We introduce robustness indicators which are obtained via unsupervised clustering of latent representations from a trained classifier and show very high correlations to the model performance on corrupted test data.
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data correctly into tracks. In this work, we present a self-supervised multiple object tracking approach based on visual features and minimum cost lifted multicuts. Our method is based on straight-forward spatio-temporal cues that can be extracted from neighboring frames in an image sequences without supervision. Clustering based on these cues enables us to learn the required appearance invariances for the tracking task at hand and train an AutoEncoder to generate suitable latent representations. Thus, the resulting latent representations can serve as robust appearance cues for tracking even over large temporal distances where no reliable spatio-temporal features can be extracted. We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking.
Correlation Clustering, also called the minimum cost Multicut problem, is the process of grouping data by pairwise similarities. It has proven to be effective on clustering problems, where the number of classes is unknown. However, not only is the Multicut problem NP-hard, an undirected graph G with n vertices representing single images has at most edges, thus making it challenging to implement correlation clustering for large datasets. In this work, we propose Multi-Stage Multicuts (MSM) as a scalable approach for image clustering. Specifically, we solve minimum cost Multicut problems across multiple distributed compute units. Our approach not only allows to solve problem instances which are too large to fit into the shared memory of a single compute node, but it also achieves significant speedups while preserving the clustering accuracy at the same time. We evaluate our proposed method on the CIFAR10 …
In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data correctly into tracks. In this work, we present an unsupervised multiple object tracking approach based on visual features and minimum cost lifted multicuts. Our method is based on straight-forward spatio-temporal cues that can be extracted from neighboring frames in an image sequences without superivison. Clustering based on these cues enables us to learn the required appearance invariances for the tracking task at hand and train an autoencoder to generate suitable latent representation. Thus, the resulting latent representations can serve as robust appearance cues for tracking even over large temporal distances where no reliable spatio-temporal features could be extracted. We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking.
Preprint: Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches
(2020)
In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.