Refine
Document Type
Conference Type
- Konferenz-Abstract (3)
- Konferenz-Poster (1)
- Konferenzartikel (1)
Is part of the Bibliography
- yes (6)
Keywords
- Biogasanlage (2)
- Methanisierung (2)
- Biogas (1)
- Biogasreaktor (1)
- Biologische Methanisierung (1)
- Methan (1)
- Mikroorganismengemeinschaft (1)
- Prozessoptimierung (1)
- methanogene Archaeen (1)
Institute
Open Access
- Closed Access (3)
- Open Access (2)
Die optimale Zusammensetzung und Aktivität der Mikroorganismengemeinschaft ist für den stabilen und effizienten Betrieb einer Biogasanlage essentiell. Moderne kultivierungsunabhängige Nachweismethoden können erstmals die Basis für eine rationale mikroorganismenfokussierte Verfahrensoptimierung liefern. Als erster Schritt für den Aufbau eines aussagekräftigen Monitoringsystems für die Biogasmikrobiologie wurde ein nucleinsäurebasiertes Verfahren (TaqMan Real-time PCR) zum Nachweis der methanbildenden Mikroorganismen (Archaeen) sowie von vier Untergruppen etabliert und auf Proben aus zwei unterschiedlich betriebenen Biogasanlagen in Neuried und Oberried angewandt. Bei der Anlage in Oberried in der Nähe von Freiburg, betrieben von örtlichen Landwirten (Substrat: Gülle, Grassilage, Maissilage, Mist, Anlage mit Güllevorgrube, Fermenter und Gärrestlager) konnten insgesamt höhere absolute Konzentrationen an Archaeen nachgewiesen werden als in der Anlage in Neuried in der Nähe von Offenburg, betrieben durch die Fa. badenova AG & Co. KG, Freiburg (thermophil betrieben, Substrat: Maissilage, Anlage mit Hauptfermenter, Nachfermenter und Gärrestlager). Auch hinsichtlich der vier untersuchten Untergruppen zeigten sich deutliche Unterschiede, die auf die unterschiedlichen an der Methanbildung beteiligten Abläufe hinweisen.
Vorgestellt wird ein Konzept zur biologischen Methanisierung von Wasserstoff direkt in Biogasreaktoren, mit dem durch Membranbegasung der Methangehalt des Biogases auf > 96 % erhöht werden kann. Essentiell zum Erreichen solch hoher Methanwerte sind die Einhaltung eines optimalen pH-Bereichs und die Vermeidung von H2-Akkumulation. Im Falle einer Limitierung der Methanbildungsrate durch den eigentlichen anaeroben Abbauprozess der Biomasse ist auch eine externe Zufuhr von CO2 zur weiteren Methanbildung denkbar. Das Verfahren soll weiter optimiert und in einem von der Deutschen Bundesstiftung Umwelt geförderten Projekt in der Biogasanlage einer regionalen Käserei in der Praxis getestet werden. Die hier angestrebte Kombination aus dezentraler Abfallverwertung und Eigenenergieerzeugung eines lebensmittelverarbeitenden Betriebs unter Einbindung in ein intelligentes Erneuerbare Energien - Konzept soll einen zusätzlichen Mehrwert liefern.
Biological in situ methanation: Gassing concept and feeding strategy for enhanced performance
(2017)
The expansion of fluctuating renewable electricity production from wind and solar energy requires huge storage capacities. Power-to-gas (PtG) can contribute to tackle that issue via a two-step process, the electrolytic production of hydrogen and a subsequent methanation step (with additional CO2). The resulting fully grid compatible methane, also known as synthetic natural gas (SNG), can be both stored and transported in the vast existing natural gas infrastructure.
To overcome current major drawbacks of PtG, the relatively low efficiency and the high costs, we developed an improved method for the methanation step. In our approach we use a further development of the biological in situ methanation of hydrogen in biogas plants. Because this strategy uses directly internal residual CO2 from the biogas process in the biogas plant, you neither need additional external CO2 nor special reactors. Thus, PtG is combined with the production of an upgraded highly methane rich raw biogas.
However, the low solubility of hydrogen in aqueous solutions and the exploitation of the maximum biological production rates are still an engineering challenge for high performance biological in situ methanation.
In our experiments a setup with membrane gassing turned out to be most promising to ensure a sufficient gas liquid mass transfer of the hydrogen. The monitoring of hydrogenotrophic and aceticlastic archaea showed some adaption of these microbial subgroups to the hydrogen feed.
In order to achieve high methane concentrations of more than 90 % in the raw biogas a CO2-controlled hydrogen feed flow rate is suggested. For methane concentrations lower than 90 % simple current controlled hydrogen supply can be applied.