Refine
Document Type
- Conference Proceeding (11)
- Article (unreviewed) (2)
- Book (1)
- Contribution to a Periodical (1)
Conference Type
- Konferenz-Abstract (7)
- Konferenzartikel (3)
- Konferenz-Poster (1)
Is part of the Bibliography
- yes (15)
Keywords
- Herzinsuffizienz (2)
- Bestrahlung (1)
- Kardiale Resynchronisationstherapie (1)
- Speiseröhre (1)
Institute
Open Access
- Closed Access (6)
- Open Access (5)
- Closed (1)
Die kardiale Resynchronisationstherapie ist ein großer Segen für viele Patienten mit einer Herzschwäche, die auf einen krankhaften Verlust der synchronen Kontraktion beider Herzkammern zurückzuführen ist. Warum einige von ihnen jedoch nicht darauf ansprechen, wird gegenwärtig erforscht. Als eine neue Methode mit dem Ziel der Effektivitätssteigerung dieser Therapie mit elektronischen Implantaten demonstrieren wir die Nutzbarkeit von durch eine Schluckelektrode aus der Speiseröhre abgeleiteten Elektrokardiogrammen.
Using guideline parameters for indication of cardiac resynchronization therapy (CRT), only about two thirds of the patients improve clinically. Unfortunately both, surface ECG and echo are uncertain to predict CRT response. To better characterize cardiac desynchronization in heart failure, interventricular (IVCD) and intra-leftventricular conduction delays (ILVCD) were measured by esophageal left ventricular electrogram (LVE). Recordings in 43 CRT patients (34m, 9f, age: 64.7 ± 9.5yrs) evidenced only weak correlation between IVCD and QRS of 0.53 and between ILVCD and QRS of 0.33. This demonstrated that QRS duration is not a reliable indicator of desynchronization. Therefore, the study resulted into development of LVE feature for a programmer with implant support device. It can be used interoperatively to guide the left ventricular electrode location in order to increase responder rate in CRT.
Semi-invasive electromechanical target interval to guide left ventricular electrode placement
(2011)
About 20% of those heart failure patients receiving cardiac resynchronization therapy (CRT) are in atrial fibrillation (AF). Current guidelines apply for patients in sinus rhythm only. Recent studies have shown again, that successful resynchronization is closely linked to a pre-existent ventricular desynchronization. In those studies, the interventricular conduction delay (IVCD) was determined prior to device implantation by ultrasound in patients with sinus rhythm (SR)only. In patients with AF this method ́s use is limited.
To implement left-heart electrogram (LHE) into standard programmers and to simplify IVCD measurement in heart failure patients with AF, LHE was recorded in 11 AF patients with heart failure by Biotronik ICS3000 programmer via a15Hz Butterworth high-pass filter. Therefore, TOslim esophageal electrode (Dr. Osypka GmbH, Rheinfelden, Germany) was perorally applied and fixed in position of maximal left ventricular defection. IVCD was measured between onset of QRS in surface ECG and left ventricular defection (LV) in LHE. In addition, intra-left ventricular conduction delay (ILVCD) was measured as duration of LV in LHE.
In all of the 11 AF patients, desynchronization was quantifiable by LHE. Mean QRS of 162 ± 27ms (120-206ms) was linked with IVCD of 62ms ± 27ms (37-98ms) and ILVCD of 110 ± 20ms (80-144ms), at mean. Correlation between IVCD and QRS was 0.39 (n. s.) with IVCD/QRS ratio of 0.38 ± 0.11 (0.22-0.81).
A 15Hz high-pass filtered LHE feature of the Biotronik ICS3000 programmer is feasible to quantify ventricular dyssynchrony in heart failure patients with AF in order to clearly indicate implantation of CRT systems. As relations between QRS duration, IVCD and ILVCD considerably differ interindividually, the predictive values of IVCD, ILVCD and IVCD/QRS ratio for individual CRT response or non-response shall be identified in follow-up studies.
Significance of new electrocardiographic parameters to improve cardiac resynchronization therapy
(2011)
Introduction: Oesophageal left heart electrogram (LHE) is a valuable tool providing electrocardiographic parameters for cardiac resynchronization therapy (CRT). It can be utilized to measure left ventricular (LVCD) and intra-leftventricular conduction delays (ILVCD) in heart failure patients to justify implantation of CRT systems. In the follow-up, LHE enables measurement of implant-related interatrial conduction times (IACT) which are the key intervals defining the hemodynamically optimal AV delay (AVD).
Methods: By TOSlim oesophageal electrode and Rostockfilter (Osypka AG, Rheinfelden, Germany), LHE was recorded in 39 heart failure patients (10f, 29m, 65±8yrs., QRS=163±21ms) after implantation of CRT systems according to guidelines. In position of maximal left ventricular deflection, LVCD and ILVCD were measured and compared with QRS width. In position of maximal left atrial deflection (LA), IACT was determined in VDD and DDD operation as interval As-LA and Ap-LA between atrial sense event (As) or stimulus (Ap), resp., and onset of LA. AVD was individualized using SAV =As-LA + 50ms for VDD and PAV=Ap-LA + 50ms for DDD operation.
Results: The CRT patients were characterized by minimal transoesophageal LVCD of 40ms but 73±20ms, at mean, ILVCD of 90±24ms and QRS/LVCD ratio of 2.4±0.6. The measured As-LA of 39±24ms and Ap-LA of 124±26ms resulted into SAV of 89±24ms and PAV of 174±26ms. In case of empirical AVD programming using 120ms for SAV and 180ms for PAV, the LHE revealed inverse sequences of LA and Vp in 4 patients (10%) during VDD and 13 patients (33%) in DDD pacing. In these patients, Vp preceded LA as IACT exceeded the programmed AVD.
Conclusion: Guideline indication of CRT systems is associated with LVCD of 40ms or more. Therefore, individual LVCD offers the minimal target interval that should be reached during left ventricular electrode placement to increase responder rate. Postoperatively, AV delay optimization respecting implant-related IACTs excludes adverse hemodynamic effects.
Electrical velocimetry to optimize VV delay in biventricular VVIR and DDD pacing for heart failure
(2011)
Introduction: VV delay (VVD) is the only parameter to hemodynamically optimize cardiac resynchronization therapy (CRT) for patients with atrial fibrillation (AF). Electrical velocimetry (EV) has been established to monitor thoracic electrical conductivity and to calculate hemodynamic surrogate parameters. We compared the response of this method to hemodynamic parameter changes between CRT patients with sinus rhythm (SR) and patients with AF.
Methods: VVD was individualized in 17 CRT patients in SR (12m, 5f, 67.0±7.2yrs.) after echo AV delay optimization and in 11 CRT patients in AF (10m, 1f, 69.8±9.6yrs.) using the Aesculon Cardiovascular Monitor (Osypka Medical, Berlin, Germany). Serial 30s EV recordings were accomplished, decreasing the VVD stepwise by 10ms from +60ms to -60ms between right and left ventricular stimulus. Optimal VVD was determined by the maximum of at least two of the three averaged parameters stroke volume (SV), cardiac output (CO) and cardiac index (CI). The response of SV, CO and CI was tested comparing their values in optimal VVD and suboptimal VVD. Suboptimal VVD was defined by optimal VVD±20ms.
Results: In all 28 patients in SR and AF, EV recordings resulted in optimal VVD. Between suboptimal and optimal mean VVD of 18.6±30.8ms between left and right ventricular stimulus, SV increased by 7.2±6.8%, CO by 7.8±7.2% and CI by 10.0±13.3% (all p<0.02). In the SR group with VVD of 18.8± 29.6ms, SV increased by 4.6±2.9%, CO by 5.0±2.9% and CI by 4.9±2.9% (all p<0.02). In the AF group with VVD of 18.2±4.0ms, SV increased by 10.4±8.9%, CO by 11.3±9.5% and CI by 16.4±18.2% (all p<0.02). Significant differences were not found between optimal VVD in SR and AF patients.
Conclusion: EV is a feasible serial method to individualize VVD in DDD and VVIR pacing for heart failure. Its response to hemodynamic changes demonstrates the value of EV for VVD fine-tuning.