Refine
Year of publication
Document Type
- Conference Proceeding (54)
- Contribution to a Periodical (4)
- Report (2)
- Article (unreviewed) (1)
Conference Type
- Konferenzartikel (23)
- Sonstiges (19)
- Konferenz-Abstract (12)
Is part of the Bibliography
- yes (61)
Keywords
- RoboCup (32)
- Roboter (6)
- Deep Reinforcement Learning (3)
- Humanoider Roboter (2)
- Machine Learning (2)
- AI-Assisted Control (1)
- Agentbasierter Transport (1)
- Deep Learning (1)
- Deep learning (1)
- Entscheidungstheorie (1)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (34)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (24)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (13)
- IMLA - Institute for Machine Learning and Analytics (7)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (4)
- Fakultät Wirtschaft (W) (3)
- INES - Institut für nachhaltige Energiesysteme (2)
- Zentrale Einrichtungen (2)
Open Access
- Open Access (53)
- Bronze (34)
- Closed Access (5)
- Closed (3)
- Diamond (2)
- Grün (2)
Funding number
- 110133027 (1)
Seit 1997 finden jährlich Weltmeisterschaften im Roboterfußball statt. Das Ziel ist es dabei, bis 2050 eine Mannschaft aus Robotern zu stellen, die gegen den menschlichen Fußballweltmeister gewinnt. Dazu müssen die Roboter in der Lage sein, das Verhalten ihrer menschlichen Gegner einzuschätzen und ihre Entscheidungen vorauszuahnen. Während die gängigen Verfahren zur Entscheidungsfindung in unsicheren Umgebungen in der Regel auf rationalen Entscheidungen nach der Entscheidungstheorie basieren, zeigt sich, dass menschliches Entscheiden teilweise nicht dieser Rationalität folgt. Daniel Kahneman und Amos Tversky zeigten das in vielen Studien und entwickelten daraus die bekannte Prospect Theory für die Kahneman 2002 den Wirtschaftsnobelpreis erhielt. In diesem Artikel wird beschrieben, wie Extended Behavior Networks (EBNs) auf einfache Weise erweitert werden können, um menschliches Entscheidungsverhalten auch in Situationen reproduzieren zu können, die von der rationalen Entscheidungstheorie abweichen.
Große Logistikunternehmen stehen in den letzten Jahren zunehmend vor neuen Herausforderungen. Zum einen steigt die Menge zu transportierender Güter jährlich, zum anderen entstanden durch Verschmelzungen großer Logistikunternehmen, wie z. B. Deutsche Post, Danzas und Exel oder UPS und Fritz, riesige Fahrzeugflotten, deren effiziente Planung die Unternehmen vor enorme Probleme stellt. Die einzige Möglichkeit, diese meist heterogenen, also aus vielen verschiedenen Verkehrsmitteln bestehenden Flotten mit herkömmlichen Mitteln effizient zu planen, ist die Aufteilung in (regionale) Geschäftsbereiche. Dadurch können viele Synergieeffekte nicht genutzt werden, was unter anderem zu unnötig hohen Transportkilometerleistungen und Leerfahrten führt. Im Rahmen des Forschungsprojekts Attractive (Programm IngenieurNachwuchs) wurden neue Algorithmen entwickelt, mit deren Hilfe dieOptimierung von Transportaufträgen unter realen Be-dingungen und in realistischen Größenordnungen möglich wird. In diesem Artikel wird kurz auf die Optimierung eingegangen, und dann werden die ersten gewonnenen Ergebnisse zusammengefasst.
Seit 1997 finden jährlich Weltmeisterschaften im Roboterfußball statt. Dabei wird in verschiedenen Ligen teils mit echten, teils mit simulierten Robotern Fußball gespielt. In der small size league spielen fünf gegen fünf Roboter auf einem 5x4,5 m großen Feld. Die Steuerung der Roboter wird von einem externen Rechner übernommen, der seine Information von einer über dem Feld angebrachten Kamera erhält. In der middle size league spielen vier gegen vier Roboter auf einem 8x12 m großen Feld. Hier müssen im Unterschied zur small size league die Roboter vollständig autonom sein, d.h., alle Sensoren und auch die Entscheidungslogik muss auf dem Roboter selbst untergebracht sein. Dasselbe gilt für die four legged robot league, bei der jeweils vier Sony Aibo Roboter gegeneinander antreten (Abbildung 1.11-1), sowie für die Königsklasse, der humanoid league, bei der jeweils drei zweibeinige Roboter gegeneinander spielen. Daneben existieren zwei Simulationsligen: die seit 1997 existierende 2D simulation league, bei der elf gegen elf gespielt wird und die seit 2005 im Programm befindliche 3D simulation league, bei der im Gegensatz zur 2D league tatsächlich existierende zweibeinige Nao-Roboter simuliert werden. In dieser Liga hat sich erstmals eine Mannschaft der Hochschule Offenburg für die Weltmeisterschaft 2009 qualifiziert. Neben Fußballrobotern gibt es auch Ligen für Hausroboter (RoboCup@Home) und Rettungsroboter (RoboCup Rescue). Inzwischen ist die RoboCup WM mit der zugehörigen Konferenz zum größten Robotik-Event weltweit avanciert.
In their famous work on prospect theory Kahneman and Tversky have presented a couple of examples where human decision making deviates from rational decision making as defined by decision theory. This paper describes the use of extended behavior networks to model human decision making in the sense of prospect theory. We show that the experimental findings of non-rational decision making described by Kahneman and Tversky can be reproduced using a slight variation of extended behavior networks.
This paper discusses a technological solution to real-time road transportation optimization using a commercial multi-agent based system, LS/ATN, which has been proven through real-world deployment to reduce transportation costs for both small and large fleets in the full and part load business. Subsequent to describing the real-time optimization approach, we discuss how the platform is currently evolving to accept live data from vehicles in the fleet in order to improve optimization accuracy. A selection of the predominant pervasive technologies available today for enhancing intelligent route optimization is described.
In this paper we propose a motion framework forbipedal robots that decouples motion definitions from stabilizingthe robot. This simplifies motion definitions yet allows dynamicmotion adaptations. Two applications, walking and stopping onone leg, demonstrate the power of the framework. We show thatour framework is able to perform walking and stopping on one legeven under extreme conditions and improves walking benchmarkssignificantly in the RoboCup 3D soccer simulation domain.
Autonomous humanoid robots need high torque actuators to be able to walk and run. One problem in this context is the heat generated. In this paper we propose to use water evaporation to improve cooling of the motors. Simulations based on thermodynamic calculations as well as measurements on real actuators show that, under the assumption of the load of a soccer game, cooling can be considerably improved with relatively small amounts of water.
In this paper we show that a model-free approach to learn behaviors in joint space can be successfully used to utilize toes of a humanoid robot. Keeping the approach model-free makes it applicable to any kind of humanoid robot, or robot in general. Here we focus on the benefit on robots with toes which is otherwise more difficult to exploit. The task has been to learn different kick behaviors on simulated Nao robots with toes in the RoboCup 3D soccer simulator. As a result, the robot learned to step on its toe for a kick that performs 30% better than learning the same kick without toes.
For the RoboCup Soccer AdultSize League the humanoid robot Sweaty uses a single fully convolutional neural network to detect and localize the ball, opponents and other features on the field of play. This neural network can be trained from scratch in a few hours and is able to perform in real-time within the constraints of computational resources available on the robot. The time it takes to precess an image is approximately 11 ms. Balls and goal posts are recalled in 99 % of all cases (94.5 % for all objects) accompanied by a false detection rate of 1.2 % (5.2 % for all). The object detection and localization helped Sweaty to become finalist for the RoboCup 2017 in Nagoya.
One of the challenges in humanoid robotics is motion control. Interacting with humans requires impedance control algorithms, as well as tackling the problem of the closed kinematic chains which occur when both feet touch the ground. However, pure impedance control for totally autonomous robots is difficult to realize, as this algorithm needs very precise sensors for force and speed of the actuated parts, as well as very high sampling rates for the controller input signals. Both requirements lead to a complex and heavy weight design, which makes up for heavy machines unusable in RoboCup Soccer competitions.
A lightweight motor controller was developed that can be used for admittance and impedance control as well as for model predictive control algorithms to further improve the gait of the robot.