Refine
Document Type
- Conference Proceeding (9)
- Patent (3)
- Report (1)
Conference Type
- Konferenzartikel (5)
- Sonstiges (4)
Is part of the Bibliography
- yes (13)
Keywords
- Biologische Methanisierung (5)
- RoboCup (4)
- Biological methanation (3)
- Verfahrenstechnik (3)
- Methanisierung (2)
- Roboter (1)
Institute
Open Access
- Open Access (11)
- Bronze (9)
- Closed (2)
For the RoboCup Soccer AdultSize League the humanoid robot Sweaty uses a single fully convolutional neural network to detect and localize the ball, opponents and other features on the field of play. This neural network can be trained from scratch in a few hours and is able to perform in real-time within the constraints of computational resources available on the robot. The time it takes to precess an image is approximately 11 ms. Balls and goal posts are recalled in 99 % of all cases (94.5 % for all objects) accompanied by a false detection rate of 1.2 % (5.2 % for all). The object detection and localization helped Sweaty to become finalist for the RoboCup 2017 in Nagoya.
This paper describes the Sweaty II humanoid adult size robot trying to qualify for the RoboCup 2018 adult size humanoid competition. Sweaty came 2nd in RoboCup 2017 adult size league. The main characteristics of Sweaty are described in the Team Description Paper 2017. The improvements that have been made or are planned to be implemented for RoboCup 2018 are described in this paper.
Autonomous humanoid robots require light weight, high torque and high speed actuators to be able to walk and run. For conventional gears with a fixed gear ratio the product of torque and velocity is constant. On the other hand desired motions require maximum torque and speed. In this paper it is shown that with a variable gear ratio it is possible to vary the relation between torque and velocity. This is achieved by introducing systems of rods and levers to move the joints of our humanoid robot ”Sweaty II”. On the basis of a variable gear ratio low speed and high torque can be achieved for those joint angles, which require this motion mode, whereas high speed and low torque can be realized for those joint angles, where it is favorable for the desired motion.
This paper describes the Sweaty II humanoid adult size robot trying to qualify for the RoboCup 2017 adult size humanoid competition. Sweaty came 2nd in RoboCup 2016 adult size league. The paper describes the main characteristics of Sweaty that made this success possible, and improvements that have been made or are planned to be implemented for RoboCup 2017.
Due to the Covid-19 pandemic, the RoboCup WorldCup 2021 was held completely remotely. For this competition the Webots simulator (https://cyberbotics.com/) was used, so all teams needed to transfer their robot to the simulation. This paper describes our experiences during this process as well as a genetic learning approach to improve our walk engine to allow a more stable and faster movement in the simulation. Therefore we used a docker setup to scale easily. The resulting movement was one of the outstanding features that finally led to the championship title.
One of the challenges in humanoid robotics is motion control. Interacting with humans requires impedance control algorithms, as well as tackling the problem of the closed kinematic chains which occur when both feet touch the ground. However, pure impedance control for totally autonomous robots is difficult to realize, as this algorithm needs very precise sensors for force and speed of the actuated parts, as well as very high sampling rates for the controller input signals. Both requirements lead to a complex and heavy weight design, which makes up for heavy machines unusable in RoboCup Soccer competitions.
A lightweight motor controller was developed that can be used for admittance and impedance control as well as for model predictive control algorithms to further improve the gait of the robot.
This paper describes the new Sweaty II humanoid adult size robot trying to qualify for the RoboCup 2016 adult size humanoid competition. Based on experiences during RoboCup 2014, the Sweaty robot has been completely redesigned to a new robot Sweaty II. A major change is the use of linear actuators for the legs. Another characteristic is its indirect actuation by means of rods. This allows a variable transmission ratio depending on the angle of a joint.
Im Zuge der Machbarkeitsstudie „BubbleMeth“ (FKZ BWFE310091) wurde die Machbarkeit der biologischen Methanisierung in einem neukonzipierten innovativen Pilot-Reaktor, basierend auf einer Gegenstromblasensäule mit separatem Entgasungs-Reaktor, sowohl für den Betrieb in der biologischen in-situ als auch der ex-situ Methanisierung demonstriert.
Die Pilot-Anlage besteht aus einer Gegenstromblasensäule und einem separaten Entgasungs-Reaktor und wurde an der Hochschule Offenburg geplant und gebaut. Die beiden Reaktor-Säulen haben jeweils eine Höhe von 10 m, einen Säulendurchmesser von 0,3 m und ein Gesamtreaktionsvolumen von etwa 1,1 m3. Der Gaseintrag erfolgt über Sinterplatten am Boden der Gegenstromblasensäule. In dieser Begasungssäule strömt die Flüssigkeit in entgegengesetzter Richtung zu den aufsteigenden Gasblasen und reichert sich durch den am Säulenfuß vorliegenden hydraulischen Druck zunehmend mit gelöstem Gas an. Die Säule, in die das Eduktgas am Säulenboden eingetragen wird, ist in Abbildung 1 auf der rechten Seite dargestellt und befindet sich auf der Saugseite einer Pumpe. Bei einer etwa 9,5 m hohen Wassersäule erhöht sich der Absolutdruck am Säulenboden auf etwa 1,95 bar, womit sich die Löslichkeit einer beliebigen Gaskomponente im Vergleich zum Atmosphärendruck bei konstanter Temperatur im Gleichgewicht gemäß dem Henry’schen Gesetz näherungsweise verdoppelt. Dieser Effekt wird genutzt, um die Verfügbarkeit von gelöstem Wasserstoff für die bei der biologischen Methanisierung katalytisch wirkenden hydrogenothrophen Archaeen zu erhöhen. Durch die Zirkulation der Flüssigkeit und den damit erreichten Druckwechsel wird auf der Seite des Entgasungs-Reaktors ein Ausgasen der relativ zum Atmosphärendruck übersättigten Gaskomponente ermöglicht. Durch die Zirkulation der Flüssigkeit über zwei Säulen wird außerdem die räumliche Trennung des Eduktgaseintrages und der Produktgasabtrennung erreicht.
Die in-situ Methanisierung wurde in der Machbarkeitsstudie bis zu einer organischen Beladungsrate von 0,94 kg m-3 d-1 realisiert. Die erwartete Biogasbildungsrate (BGBR) bei vollständiger Umsetzung des Glucose/Fructose-Substrates zu Methan und CO2 lag bei ca. 0,686 m3 m-3 d-1. Die gemessene BGBR erreichte 0,61 ± 0,03 m3 m-3 d-1. Die geringe Abweichung kann auf eine zusätzliche Nutzung des Substrates für den Erhaltungsstoffwechsel des gesamten biologischen Systems zurückgeführt werden. Der maximale volumetrische H2-Eintrag betrug während der in-situ Methanisierung 0,785 m3 m-3 d-1 und ist dabei bezogen auf das gesamte Reaktionsvolumen von ca. 1,1 m3 in beiden Reaktorkolonnen. Das eingesetzte H2:CO2-Verhältnis lag bei 2,3, um einen vollständigen CO2-Umsatz und eine damit verbundene Verschiebung des pH-Wertes in den alkalischen Bereich bei der in-situ Methanisierung zu vermeiden. Die Produktgaszusammensetzung lag stabil bei ca. 80 Vol.% CH4, 18 Vol.% CO2 und geringen Mengen an Stickstoff, die im Wesentlichen aus der manuellen Entnahme der Gasproben resultieren, und entsprach der erwarteten Zusammensetzung bei dem vorgegebenen H2:CO2-Verhältnis.
Im Anschluss an die Untersuchungsphase der in-situ Methanisierung wurde der Prozess auf die ex-situ Methanisierung umgestellt. Dazu wurde die OLR schrittweise reduziert und gleichzeitig der Eintrag von CO2 aus einer Druckgasflasche erhöht. Die ex-situ Methanisierung wurde im Rahmen der Machbarkeitsstudie bis zu einem volumenspezifischen CO2-Eintrag bezogen auf das Gesamtreaktionsvolumen von 1,1 m3 von 0,563 m3 CO2 m-3 d-1 durchgeführt.
Der maximale volumetrische H2-Eintrag betrug während der ex-situ Methanisierung 2,168 m3 m-3 d-1. Das eingesetzte H2:CO2-Verhältnis lag bei 3,6 bis 3,9. Die Produktgaszusammensetzung lag stabil bei ca. 91 Vol.% CH4, 8 Vol.% CO2 und geringen Mengen an Stickstoff, und entsprach der erwarteten Zusammensetzung bei dem vorgegebenen H2:CO2-Verhältnis.
Besonders bemerkenswert war, dass sowohl bei der in-situ als auch der ex-situ Methanisierung und den jeweils in der Machbarkeitsstudie eingesetzten maximalen volumetrischen H2-Einträge weder im austretenden Produktgas am Entgasungsreaktor noch im rezirkulierten Gas am Kopf des Begasungsreaktors Wasserstoff nachzuweisen war. Damit besteht großes Potenzial für eine weitere Steigerung der Methanbildungsrate. Aus diesem Grund sollen die Arbeiten zur biologischen Methanisierung in einem Innovationsprojekt fortgeführt werden. Die Anlage soll hinsichtlich ihrer Eignung in einer relevanten Einsatzumgebung zur Methanisierung von in Biogas enthaltenem CO2-bewertet werden. Dazu soll die Anlage außerdem mit einem preiswerten alkalischen Elektrolyseur kombiniert werden, um das Verfahren so kostengünstig wie möglich zu gestalten. Dieser Elektrolyseur soll in Anlehnung an die fluktuierende Energiebereitstellung Erneuerbarer Energien zyklisch betrieben werden und dabei vor allem zu Zeiten günstiger Spotmarktpreise in Betrieb sein.
Die Erfindung betrifft eine Vorrichtung zur biologischen Methanisierung von CO und/oder CO2 mittels methanogener Mikroorganismen durch Umsetzung von H2 und CO und/oder CO2, die eine Begasungskolonne und eine Entgasungskolonne, jeweils mit
einer Bodenseite und einer der Bodenseite gegenüberliegenden oberen Seite, ein in der Begasungskolonne und der Entgasungskolonne bereitgestelltes Medium mit methanogenen Mikroorganismen, eine Zuführeinrichtung zum Zuführen eines H2 enthaltenden Gases in das Medium der Begasungskolonne, wobei die Zuführeinrichtung im Bereich der Bodenseite der Begasungskolonne angeordnet ist, eine Abführeinrichtung zum Abführen eines CH4 enthaltenden Gases aus der Entgasungskolonne, eine Verbindungsleitung zwischen Begasungskolonne und Entgasungskolonne im Bereich der Bodenseiten, eine Pumpe zum Überführen von Medium über die Verbindungsleitung von der Begasungskolonne in die Entgasungskolonne, und eine Rückführleitung zwischen der Begasungskolonne und der Entgasungskolonne im Bereich der oberen Seiten zum Rückführen von Medium
aus der Entgasungskolonne in die Begasungskolonne aufweist. Die Erfindung betrifft auch ein Verfahren zur biologischen Methanisierung von CO und/oder CO2 in einer Vorrichtung mittels methanogener Mikroorganismen als Teil eines in der Vorrichtung bereitgestellten Mediums, wobei das Medium in einem Kreislauf über eine Begasungskolonne und eine Entgasungskolonne geführt wird, wobei die Kolonnen jeweils über eine Verbindungsleitung im Bereich ihrer Bodenseiten und über eine Rückführleitung im Bereich der den Bodenseiten gegenüberliegenden oberen Seiten miteinander verbunden sind, worin das Medium sich in der Begasungskolonne absteigend und in der Entgasungskolonne aufsteigend bewegt, worin dem Medium im Bereich der Bodenseite der Begasungskolonne ein H2 enthaltendes Gas zugeführt wird.
Die Erfindung betrifft eine Vorrichtung zur biologischen Methanisierung von CO und/oder CO2 mittels methanogener Mikroorganismen durch Umsetzung von H2 und CO und/oder CO2, die eine Begasungskolonne und eine Entgasungskolonne, jeweils mit einer Bodenseite und einer der Bodenseite gegenüberliegenden oberen Seite, ein in der Begasungskolonne und der Entgasungskolonne bereitgestelltes Medium mit methanogenen Mikroorganismen, eine Zuführeinrichtung zum Zuführen eines H2 enthaltenden Gases in das Medium der Begasungskolonne, eine Abführeinrichtung zum Abführen eines CH4 enthaltenden Gases aus der Entgasungskolonne, eine Verbindungsleitung zwischen Begasungskolonne und Entgasungskolonne im Bereich der Bodenseiten, eine Pumpe zum Überführen von Medium über die Verbindungsleitung von der Begasungskolonne in die Entgasungskolonne, und eine Rückführleitung zwischen der Begasungskolonne und der Entgasungskolonne im Bereich der oberen Seiten zum Rückführen von Medium aus der Entgasungskolonne in die Begasungskolonne aufweist. Die Erfindung betrifft auch ein Verfahren zur biologischen Methanisierung von CO und/oder CO2 in einer Vorrichtung mittels methanogener Mikroorganismen als Teil eines in der Vorrichtung bereitgestellten Mediums, wobei das Medium in einem Kreislauf über eine Begasungskolonne und eine Entgasungskolonne geführt wird, wobei die Kolonnen jeweils über eine Verbindungsleitung im Bereich ihrer Bodenseiten und über eine Rückführleitung im Bereich der den Bodenseiten gegenüberliegenden oberen Seiten miteinander verbunden sind, worin das Medium sich in der Begasungskolonne absteigend und in der Entgasungskolonne aufsteigend bewegt, worin dem Medium in der Begasungskolonne ein H2 enthaltendes Gas zugeführt wird.