Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- Cascading Style Sheets (1)
- Kabel (1)
- Messtechnik (1)
- Strahl (1)
Institute
Open Access
- Closed (1)
The application of leaky feeder (radiating) cables is a common solution for the implementation of reliable radio communication in huge industrial buildings, tunnels and mining environment. This paper explores the possibilities of leaky feeders for 1D and 2D localization in wireless systems based on time of flight chirp spread spectrum technologies. The main focus of this paper is to present and analyse the results of time of flight and received signal strength measurements with leaky feeders in indoor and outdoor conditions. The authors carried out experiments to compare ranging accuracy and radio coverage area for a point-like monopole antenna and for a leaky feeder acting as a distributed antenna. In all experiments RealTrac equipment based on nanoLOC radio standard was used. The estimation of the most probable path of a chirp signal going through a leaky feeder was calculated using the ray tracing approach. The typical non-line-of-sight errors profiles are presented. The results show the possibility to use radiating cables in real time location technologies based on time-of-flight method.
On the possibility to use leaky feeders for positioning in chirp spread spectrum technologies
(2014)
Real Time Localization Systems using electromagnetic waves have significantly evolved during the last years. They also might be used in industrial and in mining environments. Here, topologies might include tunnels, where it might be difficult to ensure the field coverage. Leaky feeder cables are a common solution in case of normal radio communication. In this paper, we study the possibilities to use leaky feeders also for Time-of-Flight based real time localization in such linear topologies, like tunnels, but possibly also for 2D-localization. Theoretical analysis is verified with real-life measurements, which were performed using Chirp Spread Spectrum Technologies.