Refine
Document Type
Conference Type
- Konferenzartikel (4)
Language
- English (5)
Is part of the Bibliography
- yes (5)
Keywords
- Deep Leaning (4)
- Deep diffusion models (1)
- Deep learning (1)
- Generative models (1)
- Künstliche Intelligenz (1)
- Seismic processing (1)
- geologist (1)
Open Access
- Closed (4)
- Gold (1)
- Open Access (1)
Deep learning (DL) methods have demonstrated promising advancements in seismic demultiple, addressing issues of traditional workflows. However, a key challenge is the limited flexibility of DL solutions in the demultiple process. Once a DL model has been trained, it produces one demultiple solution for a given input data. However, interpreting seismic events as multiples or primaries is often subjective. Moreover, multiple discrimination in Common Depth Point (CDP) domain relies on the accurate Normal Moveout (NMO) velocity estimation. To address this, we propose a supervised DL training method for demultiple based on moveout discrimination in the CDP domain. Our novel approach generates several multiple models based on moveout discriminations for a given input CDP gather, enhancing flexibility without additional computational costs. We validate the generalization ability of the Convolutional Neural Network (CNN) trained with the proposed methodology on synthetically generated data and on field datasets.
Seismic data processing involves techniques to deal with undesired effects that occur during acquisition and pre-processing. These effects mainly comprise coherent artefacts such as multiples, non-coherent signals such as electrical noise, and loss of signal information at the receivers that leads to incomplete traces. In this work, we employ a generative solution, since it can explicitly model complex data distributions and hence, yield to a better decision-making process. In particular, we introduce diffusion models for multiple removal. To that end, we run experiments on synthetic and on real data, and we compare the deep diffusion performance with standard algorithms. We believe that our pioneer study not only demonstrates the capability of diffusion models, but also opens the door to future research to integrate generative models in seismic workflows.
An important step in seismic data processing to improve inversion and interpretation is multiples attenuation. Radon-based algorithms are often used for discriminating primaries and multiples. Recently, deep learning (DL), based on convolutional neural networks (CNNs) has shown promising results in demultiple that could mitigate the challenges of Radon-based methods. In this work, we investigate new different strategies to train a CNN for multiples removal based on different loss functions. We propose combined primaries and multiples labels in the loss for training a CNN to predict primaries, multiples, or both simultaneously. We evaluate the performance of the CNNs trained with the different strategies on 400 clean and noisy synthetic data, considering 3 metrics. We found that training a CNN to predict the multiples and then subtracting them from the input image is the most effective strategy for demultiple. Furthermore, including the primaries labels as a constraint during the training of multiples prediction improves the results. Finally, we test the strategies on a field dataset. The CNNs trained with different strategies report competitive results on real data compared with Radon demultiple. As a result, effectively trained CNN models can potentially replace Radon-based demultiple in existing workflows.
Seismic data processing relies on multiples attenuation to improve inversion and interpretation. Radon-based algorithms are often used for multiples and primaries discrimination. Deep learning, based on convolutional neural networks (CNNs), has shown encouraging applications for demultiple that could mitigate Radon-based challenges. In this work, we investigate new strategies to train a CNN for multiples removal based on different loss functions. We propose combined primaries and multiples labels in the loss for training a CNN to predict primaries, multiples, or both simultaneously. Moreover, we investigate two distinctive training methods for all the strategies: UNet based on minimum absolute error (L1) training, and adversarial training (GAN-UNet). We test the trained models with the different strategies and methods on 400 synthetic data. We found that training to predict multiples, including the primaries …
Seismic data processing involves techniques to deal with undesired effects that occur during acquisition and pre-processing. These effects mainly comprise coherent artefacts such as multiples, non-coherent signals such as electrical noise, and loss of signal information at the receivers that leads to incomplete traces. In the past years, there has been a remarkable increase of machine-learning-based solutions that have addressed the aforementioned issues. In particular, deep-learning practitioners have usually relied on heavily fine-tuned, customized discriminative algorithms. Although, these methods can provide solid results, they seem to lack semantic understanding of the provided data. Motivated by this limitation, in this work, we employ a generative solution, as it can explicitly model complex data distributions and hence, yield to a better decision-making process. In particular, we introduce diffusion models for three seismic applications: demultiple, denoising and interpolation. To that end, we run experiments on synthetic and on real data, and we compare the diffusion performance with standardized algorithms. We believe that our pioneer study not only demonstrates the capability of diffusion models, but also opens the door to future research to integrate generative models in seismic workflows.