Refine
Document Type
Conference Type
- Konferenzartikel (1)
Language
- English (2)
Is part of the Bibliography
- yes (2)
Institute
Open Access
- Open Access (2)
This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear model predictive control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as well as a cold water storage. The system and the applied modeling approach is described and a parallelized algorithm for mixed-integer nonlinear MPC and a corresponding implementation for the system are presented. Finally, we show and discuss the results of experimental operation of the system and highlight the advantages of the mixed-integer nonlinear MPC application.
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.