Refine
Year of publication
Document Type
Conference Type
- Konferenzartikel (12)
- Konferenz-Abstract (2)
- Konferenz-Poster (2)
- Sonstiges (1)
Is part of the Bibliography
- yes (22)
Keywords
- E-Learning (2)
- Optik (2)
- Photonik (2)
- Virtuelle Realität (2)
- e-learning (2)
- m-learning (2)
- 3D User Interface (1)
- 3D virtual reality (1)
- Android (1)
- Blended Learning (1)
Institute
Open Access
- Open Access (15)
- Bronze (7)
- Closed (3)
- Closed Access (2)
- Gold (1)
In 2000 the iSign project started as a virtual web-based laboratory for students of study program electrical engineering. Continuous development in the last years led to a heterogeneous learning environment offering learning material, adaptive user settings and access to a simulation tool. Access is available via web and wireless devices such as PCs, Laptops, PDAs, smartphones and mobile phones. Our attempt to adapt the content to the user's needs and the currently used device led us to a XML based data structure. This report shows our research results about content adaptation based on XML data. The two main aspects for that process are: the device capabilities and the adaptation methods using XML data.
Recent developments in information and communication technology, along with advanced displaying techniques and high computational performance open up new visualisation methods to both scientists and lecturers. Thus simulations of complex processes [1] can be computed and visualised in image sequences. The particular idea in our approach is the outsourcing of computationally intensive calculations to servers which then send the results back to mobile users. In order to improve interpretations of the visualised results, users can view them in a 3D-perspective or stereoscopically, given the technical requirements. Today’s technology even permits to view these visualisations on a mobile phone. An example for such a computationally intensive calculation originating from the theory of relativity is depicted in Figure 4.1-1.
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.
“Today’s network landscape consists of quite different network technologies, wide range of end-devices with large scale of capabilities and power, and immense quantity of information and data represented in different formats” [9]. A lot of efforts are being done in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including mobile considering individual situation of the end user. This is very difficult because various kinds of devices used by different users or in different times/parallel by the same user which is not predictable and have to be recognized by the system in order to know device capabilities. Not only the devices but also Content and User Interfaces are big issues because they could include different kinds of data format like text, image, audio, video, 3D Virtual Reality data and upcoming other formats. Language Learning Game (LLG) is such an example of a device independent application where different kinds of devices and data formats, as a content of a flashcard is used for a collaborative learning. The idea of this game is to create a short story in a foreign language by using mobile devices. The story is developed by a group of participants by exchanging sentences/data via a flashcard system. This way the participants can learn from each other by knowledge sharing without fear of making mistakes because the group members are anonymous. Moreover they do not need a constant support from a teacher.
Nowadays, it is assumed of many applications, companies and parts of the society to be always available online. However, according to [Times, Oct, 31 2011], 73% of the world population do not use the internet and thus aren't “online” at all. The most common reasons for not being “online” are expensive personal computer equipment and high costs for data connections, especially in developing countries that comprise most of the world’s population (e.g. parts of Africa, Asia, Central and South America). However it seems that these countries are leap-frogging the “PC and landline” age and moving directly to the “mobile” age. Decreasing prices for smart phones with internet connectivity and PC-like operating systems make it more affordable for these parts of the world population to join the “always-online” community. Storing learning content in a way accessible to everyone, including mobile and smart phones, seems therefore to be beneficial. This way, learning content can be accessed by personal computers as well as by mobile and smart phones and thus be accessible for a big range of devices and users. A new trend in the Internet technologies is to go to “the cloud”. This paper discusses the changes, challenges and risks of storing learning content in the “cloud”. The experiences were gathered during the evaluation of the necessary changes in order to make our solutions and systems “cloud-ready”.
Nowadays the processing power of mobile phones, smartphones and PDAs is increasing as well as the transmission bandwidth. Nevertheless there is still the need to reduce the content and the need of processing the data. We discuss the proposals and solutions for dynamic reduction of the transmitted content. For that, device specific properties are taken into account, as much as for the aim to reduce the need of processing power at the client side to be able to display the 3D (virtual reality) data. Therefore, well known technologies, e.g. data compression are combined with new developed ideas to reach the goal of adaptive content transmission. To achieve a device dependant reduction of processing power the data have to be preprocessed at the server side or the server even has to take over functionality of weak mobile devices.
The iSign project started in 2000 as a web-based laboratory setting for students of electrical engineering. In the meantime it has broadened into a heterogeneous learning environment offering learning material, adaptive user settings and access to a simulation tool. All these offerings can be accessed via web and wireless by different clients, such as PCs, PDAs and mobile phones. User adaptive systems offer unique and personalised environment for every learner and therefore are a very important aspect of modern e-learning systems. The iSign project aims to personalise the content structure based on the learner's behaviour, content pattern, policies, and system environment. The second aspect of the recent research and development within this project is the generation of suitable content and presentation for different clients. This generation is based additionally on the user preferences in order to obtain the desirable presentation for a given device. New, valuable features are added to the mobile application, empowering the user not only to control the simulation process with his mobile device but also to input data, view the simulation's output and evaluate the results. Experiences with students have helped to improve functionality and look-and-feel whilst using the iSign system. Our goal is to provide unconstrained, continuous and personalised access to the laboratory settings and learning material everywhere and at anytime with different devices.
Nowadays the processing power of mobile phones, Smart phones and PDA is increasing, as well as the transmission bandwidth. Nevertheless there is still the need to reduce the content and the need of processing the data. Proposals and solutions for dynamic reduction of the transmitted content will be discussed. For that, device specific properties will be taken into account, aiming at reducing the need of processing power at the client side to display the 3D Virtual Reality data. Therefore, well known technologies like data compression are combined with new approaches to achieve the goal of adaptive content transmission. For device dependant reduction of processing power the data has to be pre-processed at the server side or the server itself has to take over functionality of weak mobile devices.
Mobile learning (m-learning) can be considered as a new paradigm of e-learning. The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer. By outsourcing the computational power to a server, the coverage is worldwide.
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.
The mobile devices related industries are subject to rapid change, driven by technological advances and dynamic consumer behaviour. Hence, the understanding of the mobile devices markets is an important step in the analysis phase of mobile applications development. In this paper, a brief description of the different markets is introduced followed by an analysis of the main features of the markets leaders' devices which are important in the development process of mobile web applications. Finally, approaches are proposed to deal with the mobile devices diversity.
This paper explores the potential of an m-learning environment by introducing the concept of mLab, a remote laboratory environment accessible through the use of handheld devices.
We are aiming to enhance the existing e-learning platform and internet-assisted laboratory settings, where students are offered in-depth tutoring, by providing compact tuition and tools for controlling simulations that are made available to learners via handheld devices. In this way, students are empowered by having access totheir simulations from any place and at any time.
Virtual-Reality-Darstellung elektromagnetischer Felder in dreidimensionalen Mikrowellenstrukturen
(2000)
Untersuchungen haben gezeigt, daß der Mensch ein Vielfaches an Informationen in Form von visuellen Eindrücken, im Gegensatz zur textuellen Darstellung, verarbeiten kann. Mit Hilfe des numerischen Feld-Simulationsprogramms F3D können Mikrowellenstrukturen auf die Wechselwirkung mit elektromagnetischen Feldern untersucht werden. Das Programm F3D2VRML stellt die Ergebnisse in einer dreidimensionalen Virtual-Reality-Darstellung (VR) dar.
Damit ist es dem Betrachter möglich, mehr Informationen aufzunehmen, da die Informationen mit Formen und Farben im dreidimensionalen Raum visualisiert werden.
To provide proper solutions to the problem of device dependant content delivery, a fine categorization of the application target devices is needed. Earlier attempts provided two different presentations for desktop and mobile platforms. The mobile platform presentation was divided into three categories, based on a general classification (PDA, Smartphone or mobile phone). In order to improve the on mobile device presentation a finer categorization is introduced. In this paper, our focus is to clarify the concept of this more flexible presentation module, in which the delivered content depends on the efficiency of the device based on a selected set of capabilities.
The idea of this game is to use a flashcard system to create a short story in a foreign language. The story is developed by a group of people by exchanging sentences via a flashcard system. This way, people can learn from each other without fear of making mistakes because the group members are anonymous.
Flashcards are a well known and proven method to learn and memorise. Such a way of learning is perfectly suited for “learning on the way,” but carrying all the flashcards could be awkward. In this scenario, a mobile device (mobile phone) is an adequate solution. The new mobile device operating system Android from Google allows for writing multimedia-enriched applications.
This paper shows the results of the evaluation of two sets of mobile web design guidelines concerning mobile learning. The first set of guidelines is concerned with the usage of text on mobile device screens. The second set is concerned with the usage of images on mobile devices. The evaluation is performed by eye tracking (objective) as well as questionnaires and interviews (subjective) respectively.