Refine
Year of publication
Document Type
Conference Type
- Konferenzartikel (12)
- Konferenz-Abstract (2)
- Konferenz-Poster (2)
- Sonstiges (1)
Is part of the Bibliography
- yes (22)
Keywords
- E-Learning (2)
- Optik (2)
- Photonik (2)
- Virtuelle Realität (2)
- e-learning (2)
- m-learning (2)
- 3D User Interface (1)
- 3D virtual reality (1)
- Android (1)
- Blended Learning (1)
Institute
Open Access
- Open Access (15)
- Bronze (7)
- Closed (3)
- Closed Access (2)
- Gold (1)
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.
This paper explores the potential of an m-learning environment by introducing the concept of mLab, a remote laboratory environment accessible through the use of handheld devices.
We are aiming to enhance the existing e-learning platform and internet-assisted laboratory settings, where students are offered in-depth tutoring, by providing compact tuition and tools for controlling simulations that are made available to learners via handheld devices. In this way, students are empowered by having access totheir simulations from any place and at any time.
“Today’s network landscape consists of quite different network technologies, wide range of end-devices with large scale of capabilities and power, and immense quantity of information and data represented in different formats” [9]. A lot of efforts are being done in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including mobile considering individual situation of the end user. This is very difficult because various kinds of devices used by different users or in different times/parallel by the same user which is not predictable and have to be recognized by the system in order to know device capabilities. Not only the devices but also Content and User Interfaces are big issues because they could include different kinds of data format like text, image, audio, video, 3D Virtual Reality data and upcoming other formats. Language Learning Game (LLG) is such an example of a device independent application where different kinds of devices and data formats, as a content of a flashcard is used for a collaborative learning. The idea of this game is to create a short story in a foreign language by using mobile devices. The story is developed by a group of participants by exchanging sentences/data via a flashcard system. This way the participants can learn from each other by knowledge sharing without fear of making mistakes because the group members are anonymous. Moreover they do not need a constant support from a teacher.
Virtual-Reality-Darstellung elektromagnetischer Felder in dreidimensionalen Mikrowellenstrukturen
(2000)
Untersuchungen haben gezeigt, daß der Mensch ein Vielfaches an Informationen in Form von visuellen Eindrücken, im Gegensatz zur textuellen Darstellung, verarbeiten kann. Mit Hilfe des numerischen Feld-Simulationsprogramms F3D können Mikrowellenstrukturen auf die Wechselwirkung mit elektromagnetischen Feldern untersucht werden. Das Programm F3D2VRML stellt die Ergebnisse in einer dreidimensionalen Virtual-Reality-Darstellung (VR) dar.
Damit ist es dem Betrachter möglich, mehr Informationen aufzunehmen, da die Informationen mit Formen und Farben im dreidimensionalen Raum visualisiert werden.
Nowadays the processing power of mobile phones, smartphones and PDAs is increasing as well as the transmission bandwidth. Nevertheless there is still the need to reduce the content and the need of processing the data. We discuss the proposals and solutions for dynamic reduction of the transmitted content. For that, device specific properties are taken into account, as much as for the aim to reduce the need of processing power at the client side to be able to display the 3D (virtual reality) data. Therefore, well known technologies, e.g. data compression are combined with new developed ideas to reach the goal of adaptive content transmission. To achieve a device dependant reduction of processing power the data have to be preprocessed at the server side or the server even has to take over functionality of weak mobile devices.
Flashcards are a well known and proven method to learn and memorise. Such a way of learning is perfectly suited for “learning on the way,” but carrying all the flashcards could be awkward. In this scenario, a mobile device (mobile phone) is an adequate solution. The new mobile device operating system Android from Google allows for writing multimedia-enriched applications.
This paper shows the results of the evaluation of two sets of mobile web design guidelines concerning mobile learning. The first set of guidelines is concerned with the usage of text on mobile device screens. The second set is concerned with the usage of images on mobile devices. The evaluation is performed by eye tracking (objective) as well as questionnaires and interviews (subjective) respectively.
Nowadays the processing power of mobile phones, Smart phones and PDA is increasing, as well as the transmission bandwidth. Nevertheless there is still the need to reduce the content and the need of processing the data. Proposals and solutions for dynamic reduction of the transmitted content will be discussed. For that, device specific properties will be taken into account, aiming at reducing the need of processing power at the client side to display the 3D Virtual Reality data. Therefore, well known technologies like data compression are combined with new approaches to achieve the goal of adaptive content transmission. For device dependant reduction of processing power the data has to be pre-processed at the server side or the server itself has to take over functionality of weak mobile devices.
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.