Refine
Document Type
Conference Type
- Konferenzartikel (1)
Language
- English (3)
Is part of the Bibliography
- yes (3)
Institute
Open Access
- Open Access (3)
There is a strong interaction between the urban atmospheric canopy layer and the building energy balance. The urban atmospheric conditions affect the heat transfer through exterior walls, the long-wave heat transfer between the building surfaces and the surroundings, the short-wave solar heat gains, and the heat transport by ventilation. Considering also the internal heat gains and the heat capacity of the building structure, the energy demand for heating and cooling and the indoor thermal environment can be calculated based on the urban microclimatic conditions. According to the building energy concept, the energy demand results in an (anthropogenic) waste heat; this is directly transferred to the urban environment. Furthermore, the indoor temperature is re-coupled via the building envelope to the urban environment and affects indirectly the urban microclimate with a temporally lagged and damped temperature fluctuation. We developed a holistic building model for the combined calculation of indoor climate and energy demand based on an analytic solution of Fourier's equation and implemented this model into the PALM model.
In this article we outline the model development planned within the joint projectModel-based city planningand application in climate change (MOSAIK). The MOSAIK project is funded by the German FederalMinistry of Education and Research (BMBF) within the frameworkUrban Climate Under Change ([UC]2)since 2016. The aim of MOSAIK is to develop a highly-efficient, modern, and high-resolution urban climatemodel that allows to be applied for building-resolving simulations of large cities such as Berlin (Germany).The new urban climate model will be based on the well-established large-eddy simulation code PALM, whichalready has numerous features related to this goal, such as an option for prescribing Cartesian obstacles. Inthis article we will outline those components that will be added or modified in the framework of MOSAIK.Moreover, we will discuss the everlasting issue of acquisition of suitable geographical information as inputdata and the underlying requirements from the model's perspective.