Refine
Document Type
- Conference Proceeding (4)
- Article (reviewed) (1)
- Part of a Book (1)
Conference Type
- Konferenzartikel (4)
Has Fulltext
- no (6)
Is part of the Bibliography
- yes (6)
Keywords
- Robotics (1)
Institute
Open Access
- Closed Access (6)
Time-of-Flight Cameras Enabling Collaborative Robots for Improved Safety in Medical Applications
(2020)
Human-robot collaboration is being used more and more in industry applications and is finding its way into medical applications. Industrial robots that are used for human-robot collaboration, cannot detect obstacles from a distance. This paper introduced the idea of using wireless technology to connect a Time-of-Flight camera to off-the-shelf industrial robots. This way, the robot can detect obstacles up to a distance of five meters. Connecting Time-of-Flight cameras to robots increases the safety in human-robot collaboration by detecting obstacles before a collision. After looking at the state of the art, the authors elaborated the different requirements for such a system. The Time-of-Flight camera from Heptagon is able to work in a range of up to five meters and can connect to the control unit of the robot via a wireless connection.
Sichere Detektion von Menschen in der Mensch-Roboter-Kollaboration mit Time-of-Flight Kameras
(2017)
Time-of-Flight Cameras Enabling Collaborative Robots for Improved Safety in Medical Applications
(2017)
Human-robot collaboration is being used more and more in industry applications and is finding its way into medical applications. Industrial robots that are used for human-robot collaboration, cannot detect obstacles from a distance. This paper introduced the idea of using wireless technology to connect a Time-of-Flight camera to off-the-shelf industrial robots. This way, the robot can detect obstacles up to a distance of five meters. Connecting Time-of-Flight cameras to robots increases the safety in human-robot collaboration by detecting obstacles before a collision. After looking at the state of the art, the authors elaborated the different requirements for such a system. The Time-of-Flight camera from Heptagon is able to work in a range of up to five meters and can connect to the control unit of the robot via a wireless connection.
In safety critical applications wireless technologies are not widely spread. This is mainly due to reliability and latency requirements. In this paper a new wireless architecture is presented which will allow for customizing the latency and reliability for every single participant within the network. The architecture allows for building up a network of inhomogeneous participants with different reliability and latency requirements. The used TDMA scheme with TDD as duplex method is acting gentle on resources. Therefore participants with different processing and energy resources are able to participate.
In medical applications wireless technologies are not widely spread. Today they are mainly used in non latency-critical applications where reliability can be guaranteed through retransmission protocols and error correction mechanisms. By using retransmission protocols within the disturbed shared wireless channel latency will increase. Therefore retransmission protocols are not sufficient for removing latency-critical wired connections within operating rooms such as foot switches. Todays research aims to improve reliability through the physical characteristics of the wireless channel by using diversity methods and more robust modulation. In this paper an Architecture for building up a reliable network is presented. The Architecture offers the possibility for devices with different reliability, latency and energy consumption requirements to participate. Furthermore reliability, latency and energy consumption are scalable for every single participant.