Refine
Document Type
Conference Type
- Konferenzartikel (1)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- COVID-19 (2)
- Deep Learning (1)
- Deep Learning Models (1)
- Deep learning (1)
- DenseNet (1)
- DenseNet201 (1)
- Detection (1)
- Disease Detection (1)
- GoogleNet (1)
- Image Processing (1)
Institute
Open Access
- Closed (1)
- Diamond (1)
- Open Access (1)
The COVID19 pandemic, a unique and devastating respiratory disease outbreak, has affected global populations as the disease spreads rapidly. Recent Deep Learning breakthroughs may improve COVID19 prediction and forecasting as a tool of precise and fast detection, however, current methods are still being examined to achieve higher accuracy and precision. This study analyzed the collection contained 8055 CT image samples, 5427 of which were COVID cases and 2628 non COVID. The 9544 Xray samples included 4044 COVID patients and 5500 non COVID cases. The most accurate models are MobileNet V3 (97.872 percent), DenseNet201 (97.567 percent), and GoogleNet Inception V1 (97.643 percent). High accuracy indicates that these models can make many accurate predictions, as well as others, are also high for MobileNetV3 and DenseNet201. An extensive evaluation using accuracy, precision, and recall allows a comprehensive comparison to improve predictive models by combining loss optimization with scalable batch normalization in this study. Our analysis shows that these tactics improve model performance and resilience for advancing COVID19 prediction and detection and shows how Deep Learning can improve disease handling. The methods we suggest would strengthen healthcare systems, policymakers, and researchers to make educated decisions to reduce COVID19 and other contagious diseases.
COVID-19 is a unique and devastating respiratory disease outbreak that has affected global populations as the disease spreads rapidly. Many deep learning breakthroughs may improve COVID-19 prediction and forecasting as a tool for precise and fast detection. In this study, the dataset used contained 8055 CT image samples, 5427 of which were COVID cases and 2628 non-COVID. Again, 9544 X-ray samples included 4044 COVID patients and 5500 non-COVID cases. MobileNetV3, DenseNet201, and GoogleNet InceptionV1 show the highest accuracy of 97.872%, 97.567%, and 97.643%, respectively. The high accuracy indicates that these models can make many accurate predictions, as well as others, are also high for MobileNetV3 and DenseNet201. An extensive evaluation using accuracy, precision, and recall allows a comprehensive comparison to improve predictive models by combining loss optimization with scalable batch normalization. This research shows that these tactics improve model performance and resilience for advancing COVID-19 prediction and detection and show how deep learning can improve disease handling. The methods suggested in this research would strengthen healthcare systems, policymakers, and researchers to make educated decisions to reduce COVID-19 and other contagious diseases.