Refine
Document Type
Conference Type
- Konferenzartikel (1)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- Ergänzung (1)
- Glucosamin (1)
- Nahrung (1)
Institute
Open Access
- Closed (1)
- Open Access (1)
HPTLC on amino plates, with simple heating of the plates for derivatization, has been used for quantification of glucosamine in nutritional supplements. On heating the plate glucosamine reacts to form a compound which strongly absorbs light between 305 and 330 nm, with weak fluorescence. The reaction product can be detected sensitively either by absorption of light or by fluorescence detection. The detection limit in absorption mode is approximately 25 ng per spot. In fluorescence mode a detection limit of 15 ng is achievable. A calibration plot for absorption detection is linear in the range 25 to 4000 ng glucosamine. The derivative formed from glucosamine by heating is stable for months, and the relative standard deviation is 1.64% for 600 ng glucosamine. The amounts of glucosamine found in nutritional supplements were in agreement with the label declarations.
In thin-layer chromatography, fiber-bundle arrays have been introduced for spectral absorption measurements in the UV-region. Using all-silica fiber bundles, the exciting light will be detected after re-emission on the plate with a fiberoptic spectrometer. In addition, fluorescence light can be detected which will be masked by the re-emitted light. Therefore, it is helpful to separate the absorption and fluorescence on the TLC-plate. A modified three-array assembly has been developed: using one array for detection, the two others are used for excitation with broadband band deuterium-light and with UV-LEDs adjusted to the substances under test. As an example, the quantification of glucosamine in nutritional supplements or spinach leaf extract will be described. Using simply heating of the amino-plate for derivation, the reaction product of Glucosamine can be detected sensitively either by light absorption or by fluorescence, using the new fiber-optic assembly. In addition, the properties of the new 3-row fiber-optic array and the commercially available UV-LEDs will be shown, in the interesting wavelength region for excitation of fluorescence, from 260 nm to 360 nm. The squint angle having an influence on coupling efficiency and spatial resolution will be measured with the inverse farfield method. Some properties of UV-LEDs for analytical applications will be described and discussed, too.