Refine
Document Type
Conference Type
- Konferenzartikel (1)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Institute
Open Access
- Closed Access (2)
Modelling and Simulation of Microscale Trigeneration Systems Based on Real- Life Experimental Data
(2017)
For the shift of the energy grid towards a smarter decentralised system flexible microscale trigeneration systems will play an important role due to their ability to support the demand side management in buildings. However to harness their potential modern control methods like model predictive control must be implemented for their optimal scheduling and control. To implement such supervisory control methods, first, simple analytical models representing the behaviour of the components need to be developed. At the Institute of Energy System Technologies in Offenburg we have built a real-life microscale trigeneration plant and present in this paper the models based on experimental data. These models are qualitatively validated and their application in the future for the optimal scheduling problem is briefly motivated.
Optimisation based economic despatch of real-world complex energy systems demands reduced order and continuously differentiable component models that can represent their part-load behaviour and dynamic responses. A literature study of existing modelling methods and the necessary characteristics the models should meet for their successful application in model predictive control of a polygeneration system are presented. Deriving from that, a rational modelling procedure using engineering principles and assumptions to develop simplified component models is applied. The models are quantitatively and qualitatively evaluated against experimental data and their efficacy for application in a building automation and control architecture is established.