Refine
Document Type
Conference Type
- Konferenzartikel (13)
- Konferenz-Abstract (1)
- Konferenz-Poster (1)
- Sonstiges (1)
Has Fulltext
- no (17)
Is part of the Bibliography
- yes (17)
Keywords
Institute
Open Access
- Closed Access (11)
- Open Access (5)
- Closed (1)
La industria del bacanora en Sonora, México, enfrenta la influencia de una compleja red de factores culturales, tecnológicos, económicos y legales que inhiben su desarrollo. Ello ocurre pese al esfuerzo institucional por radicar un marco normativo que elimine la práctica de los métodos informales de elaboración que derivan en calidades heterogéneas de licor. El conseguirlo se complica ante la dificultad que enfrentan los actores de esta industria para implementar prácticas efectivas de verificación de las normas vigentes en los confines de la geografía de la Denominación de Origen. En este documento se describe el uso de un prototipo de espectrómetro Raman por transformada de Fourier para analizar cualitativamente muestras desconocidas de bacanora. Este dispositivo se construyó con el uso de un interferómetro Michelson convencional, un contador de fotones de diseño propio y un foto-detector de referencia. Los resultados del trabajo confirman que dada su naturaleza de diseño y construcción, este instrumento de medición y su efectiva técnica de operación a bajo costo, constituye una alternativa viable, adaptable fácilmente a las necesidades de los actores productivos e institucionales, para asistirlos en la elaboración de bacanora y a la verificación de su calidad conforme a los criterios de la normatividad.
The combination of fossil-derived fuels with ethanol and methanol has acquired relevance and attention in several countries in recent years. This trend is strongly affected by market prices, constant geopolitical events, new sustainability policies, new laws and regulations, etc. Besides bio-fuels these materials also include different additives as anti-shock agents and as octane enhancer. Some of the chemical compounds in these additives may have harmful properties for both environment and public health (besides the inherent properties, like volatility). We present detailed Raman spectral information from toluene (C7H8) and ethanol (C2H6O) contained in samples of ElO gasoline-ethanol blends. The spectral information has been extracted by using a robust, high resolution Fourier-Transform Raman spectrometer (FT-Raman) prototype. This spectral information has been also compared with Raman spectra from pure additives and with standard Raman lines in order to validate its accuracy in frequency. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66cm-1. This allows resolving tight adjacent Raman lines like the ones observed around 1003cm-1 and 1030cm-1 (characteristic lines of toluene). The Raman spectra obtained show a reduced frequency deviation when compared to standard Raman spectra from different calibration materials. The FT-Raman spectrometer prototype used for the analysis consist basically of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling is achieved with conventional62.5/125μm multi-mode fibers. This FT-Raman setup is able to extract high resolution and frequency precise Raman spectra from the additives in the fuels analyzed. The proposed prototype has no additional complex hardware components or costly software modules. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by accurately extracting the optical path information of the Michelson interferometer. This is accomplished by generating an additional interference pattern with a λ = 632.8 nm Helium-Neon laser (HeNe laser). It enables the FT-Raman system to perform reliable and clean spectral measurements from the materials under observation.
The Raman spectra from the chemical compounds toluene and cyclohexane obtained using a Fourier Transform (FT)-Raman spectrometer prototype have been contrasted with the Raman spectra of these same materials collected with two different commercial FT-Raman devices. The FT-Raman spectrometer consist of a Michelson interferometer, a self-designed photon counter and a reference photo-detector. The evaluation methodology of the spectral information, contrary to the commercial devices that commonly use the zero-crossing method, is carried out by re-sampling the Raman scattering and by accurately extracting the optical path information of the Michelson interferometer. The FTRaman arrangement has been built using conventional parts without disregarding the spectral frequency precision that usually such a FTRaman instruments deliver. No additional complex hardware components or costly software modules have been included in this FT-Raman device. The main Raman lines from the spectra obtained with the three FT-Raman devices have been compared with the Raman lines from the standard Raman spectra of these two materials. The values obtained using the FT-Raman spectrometer prototype have shown a frequency accuracy comparable to that obtained with the commercial devices without facing the need for a large investment. Although the proposed FT-Raman prototype cannot be directly compared to the last generation of FT-Raman spectrometers from the commercial manufacturers, such a device could give an opportunity to users that require high frequency precision in their spectral analysis and are provided with rather scarce resources.
Monitoring of the molecular structure of lubricant oil using a FT-Raman spectrometer prototype
(2014)
The determination of the physical state of the lubricant materials in complex mechanical systems is highly critical from different points of view: operative, economical, environmental, etc. Furthermore, there are several parameters that a lubricant oil must meet for a proper performance inside a machine. The monitoring of these lubricants can represent a serious issue depending on the analytical approach applied. The molecular change of aging lubricant oils have been analyzed using an all-standard-components and self-designed FT-Raman spectrometer. This analytical tool allows the direct and clean study of the vibrational changes in the molecular structure of the oils without having direct contact with the samples and without extracting the sample from the machine in operation. The FT-Raman spectrometer prototype used in the analysis of the oil samples consist of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling has been accomplished by using a conventional 62.5/125μm multi-mode fiber coupler. The FT-Raman arrangement has been able to extract high resolution and frequency precise Raman spectra, comparable to those obtained with commercial FT-Raman systems, from the lubricant oil samples analyzed. The spectral information has helped to determine certain molecular changes in the initial phases of wearing of the oil samples. The proposed instrument prototype has no additional complex hardware components or costly software modules. The mechanical and thermal irregularities influencing the FT-Raman spectrometer have been removed mathematically by accurately evaluating the optical path difference of the Michelson interferometer. This has been achieved by producing an additional interference pattern signal with a λ= 632.8 nm helium-neon laser, which differs from the conventional zero-crossing sampling (also known as Connes advantage) commonly used by FT-devices. It enables the FT-Raman system to perform reliable and clean spectral measurements from the analyzed oil samples.
The authors explain a developed concept for research-oriented education in optics and photonics. It is presented which goals are to be achieved, which strategies have been developed and how these can be implemented in a blended learning scenario. The goal of our education is the best possible qualification of the students on the basis of a strong scientific and research-oriented education, which also includes the acquisition of important interdisciplinary competences. All phases of a research process are to be mapped in the learning process and offer students an insight into current research topics in optics and photonics.
Increased knowledge transfer through the integration of research projects into university teaching
(2019)
This paper describes the integration of the research project "Characterization of Color Vision using Spectroscopy and Nanotechnology: Application to Media Photonics" into an engineering course in the field of media technology. The aim is to develop the existing learning concept towards a more research-oriented teaching. Involving students in research projects as part of the learning process provides a deeper insight into current research topics and the key elements of scientific work. This makes it easier for students to recognize the importance of the acquired theoretical knowledge for the practice, which enables them to derive new insights of their own.
This paper explains the realization of a concept for research-oriented photonics education. Using the example of the integration of an actual PhD project, it is shown how students are familiarized with the topic of research and scientific work in the first semesters. Typical research activities are included as essential parts of the learning process. Research should be made visible and tangible for the students. The authors will present all aspects of the learning environment, their impressions and experiences with the implemented scenario, as well as first evaluation results of the students.
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user’s hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation’s virtual elements by the user’s very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.