Refine
Document Type
- Conference Proceeding (13)
- Article (reviewed) (4)
- Article (unreviewed) (3)
- Contribution to a Periodical (2)
- Report (2)
Conference Type
- Konferenzartikel (10)
- Konferenz-Poster (2)
Is part of the Bibliography
- yes (24)
Keywords
- energy system analysis (3)
- Energiemarkt (2)
- Energiewirtschaft (2)
- Energy Management (2)
- Energy Storage Systems (2)
- biochar (2)
- industry (2)
- local electricity markets (2)
- peer-to-peer energy trading (2)
- pyrolysis (2)
Institute
Open Access
- Open Access (18)
- Closed (5)
- Grün (5)
- Diamond (4)
- Bronze (2)
- Gold (2)
- Closed Access (1)
GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft
(2024)
Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde.
Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren.
During pyrolysis, biomass is carbonised in the absence of oxygen to produce biochar with heat and/or electricity as co-products making pyrolysis one of the promising negative emission technologies to reach climate goals worldwide. This paper presents a simplified representation of pyrolysis and analyses the impact of this technology on the energy system. Results show that the use of pyrolysis can allow getting zero emissions with lower costs by making changes in the unit commitment of the power plants, e.g. conventional power plants are used differently, as the emissions will be compensated by biochar. Additionally, the process of pyrolysis can enhance the flexibility of energy systems, as it shows a correlation between the electricity generated by pyrolysis and the hydrogen installation capacity, being hydrogen used less when pyrolysis appears. The results indicate that pyrolysis, which is available on the market, integrates well into the energy system with a promising potential to sequester carbon.
To achieve Germany's climate targets, the industrial sector, among others, must be transformed. The decarbonization of industry through the electrification of heating processes is a promising option. In order to investigate this transformation in energy system models, high-resolution temporal demand profiles of the heat and electricity applications for different industries are required. This paper presents a method for generating synthetic electricity and heat load profiles for 14 industry types. Using this methodology, annual profiles with a 15-minute resolution can be generated for both energy demands. First, daily profiles for the electricity demand were generated for 4 different production days. These daily profiles are additionally subdivided into eight end-use application categories. Finally, white noise is applied to the profile of the mechanical drives. The heat profile is similar to the electrical but is subdivided into four temperature ranges and the two applications hot water and space heating. The space heating application is additionally adjusted to the average monthly outdoor temperature. Both time series were generated for the analysis of an electrification of industrial heat application in energy system modelling.
Peer-to-peer energy trading and local electricity markets have been widely discussed as new options for the transformation of the energy system from the traditional centralized scheme to the novel decentralized one. Moreover, it has also been proposed as a more favourable alternative for already expiring feed in tariff policies that promote investment in renewable energy sources. Peer-to-peer energy trading is usually defined as the integration of several innovative technologies, that enable both prosumers and consumers to trade electricity, without intermediaries, at a consented price. Furthermore, the techno-economic aspects go hand in hand with the socio-economic aspects, which represent at the end significant barriers that need to be tackled to reach a higher impact on current power systems. Applying a qualitative analysis, two scalable peer-to-peer concepts are presented in this study and the possible participant´s entry probability into such concepts. Results show that consumers with a preference for environmental aspects have in general a higher willingness to participate in peer-to-peer energy trading. Moreover, battery storage systems are a key technology that could elevate the entry probability of prosumers into a peer-to-peer market.
An import ban of Russian energy sources to Germany is currently being increasingly discussed. We want to support the discussion by showing a way how the electricity system in Germany can manage low energy imports in the short term and which measures are necessary to still meet the climate protection targets. In this paper, we examine the impact of a complete stop of Russian fossil fuel imports on the electricity sector in Germany, and how this will affect the climate coals of an earlier coal phase-out and climate neutrality by 2045.
Following a scenario-based analysis, the results gave a point of view on how much would be needed to completely rely on the scarce non-renewable energy resources in Germany. Huge amounts of investments would be needed in order to ensure a secure supply of electricity, in both generation energy sources (RES) and energy storage systems (ESS). The key findings are that a rapid expansion of renewables and storage technologies will significantly reduce the dependence of the German electricity system on energy imports. The huge integration of renewable energy does not entail any significant imports of the energy sources natural gas, hard coal, and mineral oil, even in the long term. The results showed that a ban on fossil fuel imports from Russia outlines huge opportunities to go beyond the German government's climate targets, where the 1.5-degree-target is achieved in the electricity system.
To achieve its climate goals, the German industry has to undergo a transformation toward renewable energies. To analyze this transformation in energy system models, the industry’s electricity demands have to be provided in a high temporal and sectoral resolution, which, to date, is not the case due to a lack of open-source data. In this paper, a methodology for the generation of synthetic electricity load profiles is described; it was applied to 11 industry types. The modeling was based on the normalized daily load profiles for eight electrical end-use applications. The profiles were then further refined by using the mechanical processes of different branches. Finally, a fluctuation was applied to the profiles as a stochastic attribute. A quantitative RMSE comparison between real and synthetic load profiles showed that the developed method is especially accurate for the representation of loads from three-shift industrial plants. A procedure of how to apply the synthetic load profiles to a regional distribution of the industry sector completes the methodology.
Expansion of pyrolysis in the German energy system and its contribution to climate neutrality
(2024)
Overview
As awareness of climate change and its effects is raising more concern among the population and politicians, negative emissions technologies have gained attention for their role in mitigating global warming. The expansion of renewable energy systems together with decarbonisation technologies is a key factor in accomplishing this objective. With a primary focus on Germany, our research focuses on the introduction of pyrolysis and its implications in the energy system. This study explores the integration of pyrolysis as a producer of biochar and electricity into Germany's energy system as part of the "PyFlex" project.
Method
Using MyPyPSA-Ger, we model pyrolysis plants, considering costs and biomass potential. The model integrates pyrolysis outputs, like biochar and electricity, with energy system components. Different scenarios, including cost and CO2 limits, assess pyrolysis’s behaviour and influence on the system. The model focuses on utilizing unused biomass potentials, specifically straw and forest residue. Scenario analyses were conducted to evaluate the economic and technical parameters of pyrolysis, the use of storage technologies, and regulatory frameworks, examining the cost-optimal expansion of Germany's electricity system.
Results
Key findings indicate that wind and photovoltaic (PV) installations will dominate Germany's energy mix by 2045, with pyrolysis contributing flexibility to the system and reducing the installed capacity of wind power by 25%. Gas power plants will continue to be used in moment where no renewable energy is available, with their emissions being offset by the biochar produced through pyrolysis.
The model predicts significant expansion of pyrolysis only after 2030, with full utilization of available biomass not expected until 2035. The rate of pyrolysis deployment will be driven by the cost of implementation until 2045, after which decreasing emission limits and the need for flexible electricity generation will determine its role in the energy system. Pyrolysis is shown to contribute to achieving net negative emissions at lower costs, especially when deployed as a flexible energy provider in a system with high renewable energy shares.
Overall, the study highlights the dual role of pyrolysis in the energy system: when investment costs are low, pyrolysis is primarily used for electricity generation; when costs are high, it functions as a negative emissions technology. The findings underscore the potential of pyrolysis to support Germany's transition to a climate-neutral energy system by providing flexibility and reducing overall costs.
Für Verkehrsunternehmen stellt die Erprobung neuer Technologien eine große Herausforderung dar.
Sowohl Wasserstoff-Busse als auch Batterie-Busse können ihren Beitrag zur Umstellung des ÖPNV auf emissionsfreie Mobilität leisten. Je nach Anwendungsmuster können sich beide Technologien gut ergänzen und zu einem volkswirtschaftlichen Optimum führen. Es gilt, die Technologien im realen Umfeld zu erproben, um praxisnahe Erfahrung zu sammeln und dabei Mitarbeiter auszubilden, ohne die Qualität des Betriebes zu gefährden. Bei der aktuellen Kostenlage sehen beide Technologien ihre Einführung in den Betrieb mit Mehrkosten im Vergleich zu der aktuellen Diesel-Lösung verbunden.
Bei einer Batterie-basierten Lösung mit Pantograph-Schnellladung sind kürzere Linien gute Kandidaten für eine elektrische Umstellung ohne Auswirkungen auf die Größe der Busflotte. Auch Liniensysteme beliebiger Länge mit Knotenpunkten in regelmäßigen Abständen ermöglichen eine gemeinsame Nutzung der Ladeinfrastruktur und stellen somit reduzierte Aufbaukosten der Ladeinfrastruktur in Aussicht. In diesem Fall sind aber auch Fahrplanmanagement-Aspekte hinsichtlich der Ladezeit am Pantograph mit zu berücksichtigen, die nicht Bestandteil dieser Studie gewesen sind. Allgemein lassen die Kosten-Prognosen für Batterie und Batterie-elektrische Fahrzeuge eine signifikante Kostenreduzierung bis 2030 erkennen, die in manchen Konfigurationen zur Kostenparität und sogar geringeren Kosten als mit der Diesel-Variante führen würde.
Anders als für Batterie-Busse stellt die Linien-Konfiguration keinen wirtschaftlichen Einflussfaktor auf den Betrieb von Wasserstoff-Bussen dar. Die derzeitige Reichweite der H2-Busse reicht aus, um die zu erwartende tägliche Fahrleistung zu decken. Bei der Wasserstoffmobilität sind aber die Versorgungsinfrastruktur und die damit verbundenen Kraftstoffkosten von entscheidender Bedeutung. Ihr Aufbau ist mit hohen Investitionskosten und gesetzlichen Verpflichtungen verbunden (BImSchG, BetrSichV), die für eine erste Erprobung der Technologie im kleinen Maßstab eine Hürde für Verkehrsunternehmen darstellen könnte. Die H2 Mobility Deutschland bietet die Möglichkeit an, 700 bar Tankstellen mit einem 350 bar Modul zu erweitern, das die tägliche Versorgung von ca. 6 Bussen ermöglicht. Mit begrenzten Risiken für die Verkehrsunternehmen bietet es sich daher an, die H2 Mobilität auf eine limitierte Busflotte zu erproben. Da der Aufbau des H2-Mobility Deutschland Tankstellennetzes eine Lücke in Offenburg und Umgebung aufweist, wäre es vorstellbar, an der Errichtung einer solchen Tankstelle zu arbeiten, die die Betankung und Erprobung von Wasserstoff-Bussen ermöglicht. Auf längerer Sicht ist die Sicherstellung einer gut platzierten zuverlässigen und nachhaltigen Wasserstoffquelle von entscheidender Bedeutung. Derzeit liegen vorhandene Wasserstoffquellen in mehr als 100 km Entfernung. Eine Nutzung der Wasserkraft des naheliegenden Rheins erscheint durchaus sinnvoll, sowohl aus wirtschaftlichen als auch aus umwelttechnischen Gründen (erneuerbarer Strom, Stromkostenreduzierung durch Eigenversorgung, kürzere Transportwege, möglicher Nutzen für die Eurometropole Straßburg).
Es lässt sich festhalten, dass für die Region Offenburg zunächst die Erprobung beider Technologien, der Elektromobilität als auch der Wasserstoffmobilität, empfohlen wird. Es sollte zeitnah in den Erfahrungsaufbau in beide Technologien investiert werden. Zudem sollte bei der Elektromobilität das Flottenmanagement untersucht und evaluiert werden und bei der Wasserstoffmobilität die Möglichkeiten der Kooperation für den Aufbau der Wasserstofftankstelle. Im Rahmen der nächsten Ausschreibungsrunde für den öffentlichen Nahverkehr in Offenburg wird empfohlen, diesen emissionsfrei auszuschreiben. Es ist absehbar, dass aus Kostengründen (Kostenparität der Elektromobilität mit der Dieselvariante) als auch aus Gründen der Anforderung bzgl. der Emissionsgrenzwerte der ÖPNV emissionsfrei umgesetzt werden sollte.
This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally, a structural analysis of the public transport system of a specific city is performed, assessing best fitting bus lines for the use of electric or hydrogen busses, which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030, reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However, the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020, the parameter which influenced the most on the TCO was the battery cost, opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO, due to the learning rate of the batteries. For H2 buses, finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region, the hydrogen cost could drop to 5 €/kg. In this case, the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore, hydrogen buses can be competitive in small to midsize cities, even with limited routes. For hydrogen buses, the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.
Most recently, the federal government in Germany published new climate goals in order reach climate neutrality by 2045. This paper demonstrates a path to a cost optimal energy supply system for the German power grid until the year 2050. With special regard to regionality, the system is based on yearly myopic optimization with the required energy system transformation measures and the associated system costs. The results point out, that energy storage systems (ESS) are fundamental for renewables integration in order to have a feasible energy transition. Moreover, the investment in storage technologies increased the usage of the solar and wind technologies. Solar energy investments were highly accompanied with the installation of short-term battery storage. Longer-term storage technologies, such as H2, were accompanied with high installations of wind technologies. The results pointed out that hydrogen investments are expected to overrule short-term batteries if their cost continues to decrease sharply. Moreover, with a strong presence of ESS in the energy system, biomass energy is expected to be completely ruled out from the energy mix. With the current emission reduction strategy and without a strong presence of large scale ESS into the system, it is unlikely that the Paris agreement 2° C target by 2050 will be achieved, let alone the 1.5° C.