Refine
Document Type
- Conference Proceeding (13)
- Article (reviewed) (4)
- Article (unreviewed) (3)
- Contribution to a Periodical (2)
- Report (2)
Conference Type
- Konferenzartikel (10)
- Konferenz-Poster (2)
Is part of the Bibliography
- yes (24)
Keywords
- energy system analysis (3)
- Energiemarkt (2)
- Energiewirtschaft (2)
- Energy Management (2)
- Energy Storage Systems (2)
- biochar (2)
- industry (2)
- local electricity markets (2)
- peer-to-peer energy trading (2)
- pyrolysis (2)
Institute
Open Access
- Open Access (18)
- Closed (5)
- Grün (5)
- Diamond (4)
- Bronze (2)
- Gold (2)
- Closed Access (1)
GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft
(2024)
Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde.
Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren.
To achieve its climate goals, the German industry has to undergo a transformation toward renewable energies. To analyze this transformation in energy system models, the industry’s electricity demands have to be provided in a high temporal and sectoral resolution, which, to date, is not the case due to a lack of open-source data. In this paper, a methodology for the generation of synthetic electricity load profiles is described; it was applied to 11 industry types. The modeling was based on the normalized daily load profiles for eight electrical end-use applications. The profiles were then further refined by using the mechanical processes of different branches. Finally, a fluctuation was applied to the profiles as a stochastic attribute. A quantitative RMSE comparison between real and synthetic load profiles showed that the developed method is especially accurate for the representation of loads from three-shift industrial plants. A procedure of how to apply the synthetic load profiles to a regional distribution of the industry sector completes the methodology.
With recent developments in the Ukrainian-Russian conflict, many are discussing about Germany’s dependency on fossil fuel imports in its energy system, and how can the country proceed with reducing that dependency. With its wide-ranging consumption sectors, the electricity sector comes as the perfect choice to start with. Recent reports showed that the German federal government is already intending to have a fully renewable electricity by 2035 while exploiting all possible clean power options. This was published in the federal government’s climate emergency program (Easter Package) in early 2022. The aim of this package is to initiate a rapid transition and decarbonization of the electricity sector. The Easter Package expects an enormous growth of renewable energies to a completely new level, with already at least 80% renewable gross energy consumption, with extensive and broad deployment of different generation technologies on various scales. This paper will discuss this ambitious plan and outline some insights into this huge and rapidly increasing step, and show how much will Germany need in order to achieve this huge milestone towards a fully green supply of the electricity sector. Different scenarios and shares of renewables will be investigated in order to elaborate on preponed climate-neutral goal of the electricity sector by 2035. The results pointed out some promising aspects in achieving a 100% renewable power, with massive investments in both generation and storage technologies.
Ziel des Pilotprojektes EnMa-HAW ist die Erarbeitung und Erprobung technisch und organisatorisch übertragbarer Konzepte für ein automationsgestütztes Energiemanagement an allen Hochschulen für angewandte Wissenschaften im Land Baden-Württemberg. Das Energiemanagement wird technisch mittels Messtechnik, Datenerfassung, Datenspeicherung und Visualisierung umgesetzt und organisatorisch mit einem Energiezirkel in den Hochschulen verankert.
During pyrolysis, biomass is carbonised in the absence of oxygen to produce biochar with heat and/or electricity as co-products making pyrolysis one of the promising negative emission technologies to reach climate goals worldwide. This paper presents a simplified representation of pyrolysis and analyses the impact of this technology on the energy system. Results show that the use of pyrolysis can allow getting zero emissions with lower costs by making changes in the unit commitment of the power plants, e.g. conventional power plants are used differently, as the emissions will be compensated by biochar. Additionally, the process of pyrolysis can enhance the flexibility of energy systems, as it shows a correlation between the electricity generated by pyrolysis and the hydrogen installation capacity, being hydrogen used less when pyrolysis appears. The results indicate that pyrolysis, which is available on the market, integrates well into the energy system with a promising potential to sequester carbon.
The massive addition of renewables poses various challenges to system operators. The success of the German energy transition relies heavily on the availability of flexibility in the energy system. This paper investigates the market challenges and opportunities of achieving climate neutrality by 2045 in Germany. The analysis shows that in the absence of adequate incentives for storage systems, investments in gas power plants as a bridging technology may be necessary to ensure a secure supply. However, the long-term feasibility of these plants, especially post 2045 is questionable and could lead to underinvestment. Overcapacities from solar affect the utilization of other renewables. Despite renewables solely covering the demand for nearly 4500 hours, they will not be enough to achieve system security. The significance of storage flexibility becomes pronounced. However, they only experience high deployment after 2035. The insights of this work are crucial for sustainable energy planning and market design.
Die Digitalisierung kann der Türöffner sein, um effizient die mittelständische Industrie und den Energiemarkt zu verbinden. Das Projekt GaIN hat das Ziel, mit hochaufgelösten Produktions- und Messdaten von zehn mittelständischen Industriebetrieben neuartige Tarife und angepasste Marktplattformen zu entwickeln, die Prognosegüte für Energiebedarf, Nachfrage und Flexibilitätsverfügbarkeit zu erhöhen, die Interaktion vieler flexibler Unternehmen im Verteilnetz und in dem Bilanzkreis zu bewerten und die Auswirkung einer Nutzung der Daten auf die Energiewende anhand einer Systemanalyse zu beurteilen.
The twin concept is increasingly used for optimization tasks in the context of Industry 4.0 and digitization. The twin concept can also help small and medium-sized enterprises (SME) to exploit their energy flexibility potential and to achieve added value by appropriate energy marketing. At the same time, this use of flexibility helps to realize a climate-neutral energy supply with high shares of renewable energies. The digital twin reflects real production, power flows and market influences as a computer model, which makes it possible to simulate and optimize on-site interventions and interactions with the energy market without disturbing the real production processes. This paper describes the development of a generic model library that maps flexibility-relevant components and processes of SME, thus simplifying the creation of a digital twin. The paper also includes the development of an experimental twin consisting of SME hardware components and a PLC-based SCADA system. The experimental twin provides a laboratory environment in which the digital twin can be tested, further developed and demonstrated on a laboratory scale. Concrete implementations of such a digital twin and experimental twin are described as examples.
Peer-to-peer energy trading and local electricity markets have been widely discussed as new options for the transformation of the energy system from the traditional centralized scheme to the novel decentralized one. Moreover, it has also been proposed as a more favourable alternative for already expiring feed in tariff policies that promote investment in renewable energy sources. Peer-to-peer energy trading is usually defined as the integration of several innovative technologies, that enable both prosumers and consumers to trade electricity, without intermediaries, at a consented price. Furthermore, the techno-economic aspects go hand in hand with the socio-economic aspects, which represent at the end significant barriers that need to be tackled to reach a higher impact on current power systems. Applying a qualitative analysis, two scalable peer-to-peer concepts are presented in this study and the possible participant´s entry probability into such concepts. Results show that consumers with a preference for environmental aspects have in general a higher willingness to participate in peer-to-peer energy trading. Moreover, battery storage systems are a key technology that could elevate the entry probability of prosumers into a peer-to-peer market.