Refine
Document Type
- Conference Proceeding (11)
- Patent (4)
- Contribution to a Periodical (3)
- Article (reviewed) (2)
Conference Type
- Konferenzartikel (10)
- Konferenz-Abstract (1)
Language
- English (13)
- German (6)
- Other language (1)
Is part of the Bibliography
- yes (20)
Keywords
- Robotics (2)
- energy harvesting (2)
- vibration harvester (2)
- 3D Printed Force Sensor (1)
- 3D bin picking (1)
- 3D printed (1)
- 3D printing (1)
- 3D-Druck von leitfähigen Materialien (1)
- Capacitive Liquid Level Sensor (1)
- Cobotik (1)
Institute
Open Access
- Open Access (7)
- Closed Access (6)
- Closed (4)
- Bronze (1)
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.
Die Erfindung betrifft ein Verfahren zum 3D-Druck eines Roboterelements, insbesondere eines Fingers 5, zum Einsatz in der Robotik, bei dem mittels Multimaterialdruck wenigstens ein Sensor 7 während des Drucks des Roboterelements mitgedruckt wird. Weiterhin betrifft die Erfindung ein Betätigungs- oder Greifelement, insbesondere Finger 5 für einen Roboter, das durch ein derartiges Verfahren hergestellt wurde.
A method for 3D printing of a robot element, more particularly a finger for use in robotics. At least one sensor is concomitantly printed by means of multi-material printing during the printing of the robot element. A gripping element produced by a method of this kind includes a number of printed layers of robot element material and a concomitantly printed sensor.
Dieser Beitrag stellt die Möglichkeiten des 3D-Druckes unter der Berücksichtigung von Mensch-Roboter-Kollaborations-Anforderungen dar. Dabei werden die Vorteile mit besonderem Fokus auf die zusätzliche Gestaltungsfreiheit erläutert. Anhand von Beispielen wird der Stand der Technik bereits eingesetzter Sensorik sowie deren Notwendigkeit in Greifsystemen erläutert. Im weiteren Verlauf dieses Beitrags werden allgemeine Verfahren für die additive Verarbeitung von leitfähigen Materialien vorgestellt. Daran angeknüpft sind Beispiele speziell zur 3D-gedruckten Sensorik. Abgerundet wird der Beitrag mit einem Ausblick bezüglich 3D-gedruckter Sensorik in MRK-Greifsystemen.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
The development and manufacturing of unmanned aerial vehicles (UAVs) require a multitude of design rules. Thereby, additive manufacturing (AM) processes provide a number of significant advantages over conventional production methods, particularly for implementing requirements with regard to lightweight construction and sustainability. A new, promising approach is presented, with which, through the combination of very light structural elements with a ribbed construction, an attached covering by means of foil is used. This contribution develops and presents a development process that is based on various development cycles. Such cycles differ in their effort and scope within the overall development, and may only comprise one part of the development process, or the entire development process. The applicability of this development process is demonstrated within the framework of a comprehensive case study. The aim is to develop an additively manufactured product that is as light as possible in the form of a UAV, along with a sustainable manufacturing process for such product. Finally, the results of this case study are analyzed with regard to the improvement of lightweight construction.
3D printing offers customisation capabilities regarding suspensions for oscillators of vibration energy harvesters. Adjusting printing parameters or geometry allows to influence dynamic properties like resonance frequency or bandwidth of the oscillator. This paper presents simulation results and measurements for a spiral shaped suspension printed with polylactic acid (PLA) and different layer heights. Eigenfrequencies have been simulated and measured and damping ratios have been experimentally determined.
This paper presents the development of a capacitive level sensor for robotics applications, which is designed for measurements of liquid levels during a pouring process. The proposed sensor design applies the advantages of guard electrodes in combination with passive shielding to increase resistance against external influences. This is important for reliable operations in rapidly changing measurement environments, as they occur in the field of robotics. The non-contact type sensor for liquid level measurement is the solution for avoiding contaminations and suit food guidelines. The designed sensor can be utilized in gastronomic applications. Two versions of the sensor were simulated, fabricated, and compared. The first version is based on copper electrodes, and the other type is fully 3D printed with electrodes made of conductive polylactic acid (PLA).
The development of a 3D printed force sensor for a gripper was studied applying an embedded constantan wire as sensing element. In the first section, the state of the art is explained. In the main section of the paper the modeling, simulation and verification of a sensor element are described for a three-point bending test made in accordance with the DIN EN ISO 178. The 3D printing process of the Fused Filament Fabrication (FFF) utilized for manufacturing the sensor samples in combination with an industrial robot are shown. A comparison between theory and practice are considered in detail. Finally, an outlook is given regarding the integration of the sensor element in gripper jaws.
Separation Estimation with Thermal Cameras for Separation Monitoring in Human-Robot Collaboration
(2022)
Human-Robot Collaborative applications have the drawback of being less efficient than their non-collaborative counterparts. One of the main reasons is, that the robot has to slow down when a human being is within the operating space of the robot. There are different approaches on dynamic speed and separation monitoring in human-robot collaborative applications. One approach additionally differentiates between human and non-human objects to increase efficiency in speed and separation monitoring. This paper proposes to estimate the separation distance by measuring the temperature of the approaching object. Measurements show that the measured temperature of a human being decreases with 1 deg C per meter distance from the sensor. This allows an estimation of separation between a robotic system and a human being.
3D Bin Picking with an innovative powder filled gripper and a torque controlled collaborative robot
(2023)
A new and innovative powder filled gripper concept will be introduced to a process to pick parts out of a box without the use of a camera system which guides the robot to the part. The gripper is a combination of an inflatable skin, and a powder inside. In the unjammed condition, the powder is soft and can adjust to the geometry of the part which will be handled. By applying a vacuum to the inflatable skin, the powder gets jammed and transforms to a solid shaped form in which the gripper was brought before applying the vacuum. This physical principle is used to pick parts. The flexible skin of the gripper adjusts to all kinds of shapes, and therefore, can be used to realize 3D bin picking. With the help of a force controlled robot, the gripper can be pushed with a consistent force on flexible positions depending of the filling level of the box. A Kuka LBR iiwa with joint torque sensors in all of its seven axis’ was used to achieve a constant contact pressure. This is the basic criteria to achieve a robust picking process.
Avoiding collisions between a robot arm and any obstacle in its path is essential to human-robot collaboration. Multiple systems are available that can detect obstacles in the robot's way prior and subsequent to a collision. The systems work well in different areas surrounding the robot. One area that is difficult to handle is the area that is hidden by the robot arm. This paper focuses on pick and place maneuvers, especially on obstacle detection in between the robot arm and the table that robot is located on. It introduces the use of single pixel time-of-flight sensors to detect obstacles directly from the robot arm. The proposed approach reduces the complexity of the problem by locking axes of the robot that are not needed for the pick and place movement. The comparison of simulated results and laboratory measurements show concordance.
A Review on Kinetic Energy Harvesting with Focus on 3D Printed Electromagnetic Vibration Harvesters
(2021)
The increasing amount of Internet of Things (IoT) devices and wearables require a reliable energy source. Energy harvesting can power these devices without changing batteries. Three-dimensional printing allows us to manufacture tailored harvesting devices in an easy and fast way. This paper presents the development of hybrid and non-hybrid 3D printed electromagnetic vibration energy harvesters. Various harvesting approaches, their utilised geometry, functional principle, power output and the applied printing processes are shown. The gathered harvesters are analysed, challenges examined and research gaps in the field identified. The advantages and challenges of 3D printing harvesters are discussed. Reported applications and strategies to improve the performance of printed harvesting devices are presented.
Human–robot collaborative applications have been receiving increasing attention in industrial applications. The efficiency of the applications is often quite low compared to traditional robotic applications without human interaction. Especially for applications that use speed and separation monitoring, there is potential to increase the efficiency with a cost-effective and easy to implement method. In this paper, we proposed to add human–machine differentiation to the speed and separation monitoring in human–robot collaborative applications. The formula for the protective separation distance was extended with a variable for the kind of object that approaches the robot. Different sensors for differentiation of human and non-human objects are presented. Thermal cameras are used to take measurements in a proof of concept. Through differentiation of human and non-human objects, it is possible to decrease the protective separation distance between the robot and the object and therefore increase the overall efficiency of the collaborative application.
In der Forschungsgruppe um Prof. Dr. Thomas Wendt werden Themen in unterschiedlichsten Bereichen von Automatisierungstechnik über funktionale Sicherheit bis hin zur 3D-gedruckten Elektronik / Sensorik behandelt. Insgesamt arbeiten vier Doktoranden und vier Mitarbeiter an der Weiterentwicklung der verschiedenen Technologien, die in diesem Artikel zusammengefasst dargestellt sind.
In diesem Artikel werden die neuesten Entwicklungen in der Forschungsgruppe um Herrn Prof. Dr. Wendt vorgestellt. Es wird der Einsatz des neuen 3-D-Druckers der Firma Neotech, sowie die neuesten Entwicklungen im Leuchtturmprojekt Flitzmo beschrieben. Zudem konnte dieses Jahr mit dem Projekt zum Einsatz von Robotik im Bereich Assisted Living begonnen werden.
O'Barro - Cocktails 4.0
(2019)