Refine
Document Type
- Conference Proceeding (6)
- Patent (4)
- Contribution to a Periodical (3)
- Article (reviewed) (2)
Language
- English (8)
- German (6)
- Other language (1)
Is part of the Bibliography
- yes (15)
Keywords
- 3D printed (1)
- 3D-Druck von leitfähigen Materialien (1)
- Greifsystemen (1)
- Mensch-Roboter-Kollaboration (1)
- electromagnetic (1)
- energy harvesting (1)
- gedruckter Sensorik (1)
- hybrid (1)
- vibration harvester (1)
Avoiding collisions between a robot arm and any obstacle in its path is essential to human-robot collaboration. Multiple systems are available that can detect obstacles in the robot's way prior and subsequent to a collision. The systems work well in different areas surrounding the robot. One area that is difficult to handle is the area that is hidden by the robot arm. This paper focuses on pick and place maneuvers, especially on obstacle detection in between the robot arm and the table that robot is located on. It introduces the use of single pixel time-of-flight sensors to detect obstacles directly from the robot arm. The proposed approach reduces the complexity of the problem by locking axes of the robot that are not needed for the pick and place movement. The comparison of simulated results and laboratory measurements show concordance.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
O'Barro - Cocktails 4.0
(2019)
Die Erfindung betrifft ein Verfahren zum 3D-Druck eines Roboterelements, insbesondere eines Fingers 5, zum Einsatz in der Robotik, bei dem mittels Multimaterialdruck wenigstens ein Sensor 7 während des Drucks des Roboterelements mitgedruckt wird. Weiterhin betrifft die Erfindung ein Betätigungs- oder Greifelement, insbesondere Finger 5 für einen Roboter, das durch ein derartiges Verfahren hergestellt wurde.
In diesem Artikel werden die neuesten Entwicklungen in der Forschungsgruppe um Herrn Prof. Dr. Wendt vorgestellt. Es wird der Einsatz des neuen 3-D-Druckers der Firma Neotech, sowie die neuesten Entwicklungen im Leuchtturmprojekt Flitzmo beschrieben. Zudem konnte dieses Jahr mit dem Projekt zum Einsatz von Robotik im Bereich Assisted Living begonnen werden.