Refine
Year of publication
- 2016 (2)
Document Type
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- Eingebettetes System (1)
- Embedded Systems (1)
- HSM (1)
- Internet of Things (1)
- Transport Layer Security (1)
- cryptography (1)
- hardware acceleration (1)
- hardware security module (1)
Institute
Open Access
- Bronze (1)
- Open Access (1)
The Transport Layer Security (TLS) protocol is a well-established standard for securing communication over insecure communication links, offering layer-4 VPN functionality. In the classical Internet TLS is widely used. With the advances of the Internet of Things (IoT) there is an increasing need to secure communication on resource-constrained embedded devices. On these devices, computation of complex cryptographic algorithms is difficult. Additionally, sensor nodes are physically exposed to attackers. Cryptographic acceleration and secure hardware security modules (HSMs) are possible solutions to these challenges. The usage of specialized cryptographic modules for TLS is not a new phenomenon. However, there are still few hardware security modules suitable for the use on microcontrollers in sensor networks. We therefore present an overview of HSM and TLS solutions along with sample implementations and share some recommendations how to combine both.
The M-Bus protocol (EN13757) is in widespread use for metering applications within home area and neighborhood area networks, but lacks a strict specification. This may lead to incompatibilities in real-life installations and to problems in the deployment of new M-Bus networks. This paper presents the development of a novel testbed to emulate physical Metering Bus (M-Bus) networks with different topologies and to allow the flexible verification of real M-Bus devices in real-world scenarios. The testbed is designed to support device manufacturers and service technicians in test and analysis of their devices within a specific network before their installation. The testbed is fully programmable, allowing flexible changes of network topologies, cable lengths and types. Itis easy to use, as only the master and the slaves devices have to be physically connected. This allows to autonomously perform multiple tests, including automated regression tests. The testbed is available to other researchers and developers. We invite companies and research institutions to use this M-Bus testbed to increase the common knowledge and real-world experience.