Refine
Document Type
Conference Type
- Konferenzartikel (6)
- Konferenz-Abstract (1)
Has Fulltext
- no (10)
Is part of the Bibliography
- yes (10)
Keywords
- Surface acoustic waves (2)
- Acoustical properties (1)
- Crystal structure (1)
- Elastic stiffness (1)
- Epitaxy (1)
- Finite-element analysis (1)
- Guided-wave testing (1)
- Haustechnik (1)
- Interdigital transducers (1)
- Kreativität (1)
Institute
Open Access
- Closed Access (5)
- Open Access (5)
- Hybrid (1)
Laser ultrasound was used to determine dispersion curves of surface acoustic waves on a Si (001) surface covered by AlScN films with a scandium content between 0 and 41%. By including off-symmetry directions for wavevectors, all five independent elastic constants of the film were extracted from the measurements. Results for their dependence on the Sc content are presented and compared to corresponding data in the literature, obtained by alternative experimental methods or by ab-initio calculations.
Elastic moduli of scandium nitride (ScN) films are determined using a laser-based experimental method working with surface acoustic waves (SAWs). ScN, a semiconductor material with promising potential for various applications, crystallizes in the cubic rock salt (rs) structure. We investigate two samples of high-crystallinity ScN(111) films with thicknesses ∼200 and ∼300 nm, grown on Si(111) substrates by pulsed DC-magnetron co-sputtering and a sample with a fiber-textured ScN film (∼800 nm) on Si(001). From the shape evolution of laser-generated acoustic pulses, SAW dispersion curves were obtained in a frequency range of 50–500 MHz. In order to take advantage of the anisotropy of the film and substrate materials, measurements were performed for 10–15 SAW wavevector directions, which could be defined with a precision of 0.2°. Using perturbation theory with respect to the ratio of film thickness and SAW wavelength, two combinations of the three independent elastic constants of the high-crystallinity rs ScN films could be extracted from the measurement data. The surface roughness of the ScN films is accounted for with a simple model. Complete sets of the three elastic moduli were inferred in two different ways: (i) SAW dispersion data for the third sample were included in the extraction procedure; and (ii) the bulk modulus is set equal to a theoretical literature value. The extracted values for the three elastic constants are at variance with published theoretical results for single-crystal ScN. Possible reasons for these discrepancies are discussed.
Properties of higher-order surface acoustic wave modes in Al(1-x)Sc(x)N / sapphire structures
(2021)
In this work, surface acoustic wave (SAW) modes and their dependence on propagation directions in epitaxial Al0.68Sc0.32N(0001) films on Al2O3(0001) substrates were studied using numerical and experimental methods. In order to find optimal propagation directions for higher-order SAW modes, phase velocity dispersion branches of Al0.68Sc0.32N on Al2O3 with Pt mass loading were computed for the propagation directions <11-20> and <1-100> with respect to the substrate. Experimental investigations of phase velocities and electromechanical coupling were performed for comparison with the numerical results. Simulations carried out with the finite element method (FEM) and with a Green function approach allowed identification of each wave type, including Rayleigh, Sezawa and shear horizontal wave modes. For the propagation direction <1-100>, significantly increased wave guidance of the Sezawa mode compared to other directions was observed, resulting in enhanced electromechanical coupling (k2eff = 1.6 %) and phase velocity (vphase = 6 km/s). We demonstrated, that selecting wave propagation in <1-100> with high mass density electrodes results in increased electromechanical coupling without significant reduction in phase velocities for the Sezawa wave mode. An improved combination of metallization, Sc concentration x, and SAW propagation direction is suggested which exhibits both high electromechanical coupling (k2eff > 6 %) and high velocity (vphase = 5.5 km/s) for the Sezawa mode.
This paper presents the results of the idea generation experiment that repeats the study originally conducted at RMIT. In order to establish the influence that the experimental treatments make on the number and the breadth of solution ideas proposed by problem solvers with different knowledge levels, students from different years of study were recruited. Ninety students from the Offenburg University of Applied Sciences, Germany were divided into three groups. All students were asked to generate ideas on cleaning lime deposits from the inside of a water pipe and were given 16 minutes to record their individual ideas. Students of two experimental groups were shown some words for two minuted each. The Su-Field group was exposed to the eight fields of MATCEMIB. The Random Word group was shown eight random words every two minutes. The Su-Field group outperformed both the Control group and the Random Word group in the number of ideas generated. It was also found that the students from the Su-Field group proposed significantly broader solutions than the students from the Control and Random Word groups. The overall results of the experiment support the conclusions made by the RMIT researchers that simple ideation techniques can significantly improve idea generation and that the systematised Substance-Field Analysis is a suitable heuristic for engineering students.
The process of establishing an industry standard for TRIZ has been initiated: VDI Guideline 4521 will cover TRIZ. Work is going on on the first part of the standard which will define and explain basic TRIZ vocabulary and notions. A first draft of a list of terms has been compiled by V. Souchkov and is currently being discussed at MATRIZ. The standardization committee consists of TRIZ specialists of various degrees together with TRIZ users from industry. It is working in close connection with MATRIZ. In parallel, translations for the elements of TRIZ terminology into several languages are being sought. According to schedule, work on the first part of the standard may be finished by July 2014 and may go into print by the end of the year.
This paper focuses on appropriately measuring the accuracy of forecasts of load behavior and renewable generation in micro-grid operation. Common accuracy measures like the root mean square of the error are often difficult to interpret for system design, as they describe the mean accuracy of the forecast. Micro-grid systems, however, have to be designed to handle also worst case situations. This paper therefore suggests two error measures that are based on the maximum function and that better allow understanding worst case requirements with respect to balancing power and balancing energy supply.
In der Wertanalyse ist die Methodik TRIZ (Theorie der Lösung erfinderischer Problemstellungen) seit vielen Jahren als Werkzeug zur Kostensenkung oder zur Steigerung der Funktionalität von Produkten bekannt. Seit ihrem ersten Bekanntwerden in Westeuropa hat sich auch TRIZ weiterentwickelt. So wurden Methoden zur Modellierung von Systemen inzwischen erweitert und um Werkzeuge zur schnellen Lösungsfindung, zur Fehlervoraussage und zur Produktplanung neu entwickelt. Durch den weltweiten wissenschaftlichen Fortschritt, die Verwendung unterschiedlicher Sprachen und neue Literatur ist andererseits auch die verwendete Terminologie angewachsen und nicht mehr eindeutig. Die neue VDI-Richtlinie 4521, von deren erstem Teil nun der Gründruck vorliegt, zielt deswegen auf eine Standardisierung der Terminologie und eine vereinheitlichte Beschreibung der Methoden ab. Mit ihrer Hilfe sollen das Studium der Methodik erleichtert, die Benutzung von Literatur vereinfacht und Inhalte der TRIZ klarer darstellbar werden.
VDI Standard 4521: Status
(2016)
VDI Guideline 4521 Part 1: “Inventive problem solving with TRIZ: Part 1 – Fundamentals and definitions” has been published on 2015-04-01. The standard will sharpen the image of TRIZ, facilitate cooperation, and support studying and teaching. It is not a textbook but concisely summarizes basic assumptions of TRIZ and its terminology. It gives an overview on specific methods and tools which will be described in the following parts.
Partial substitution of Al atoms with Sc in wurtzite AlN crystals increases the piezoelectric constants. This leads to an increased electromechanical coupling, which is required for high bandwidths in piezo-acoustic filters. The crystal bonds in Ah-xScxN (AlScN) are softened as function of Sc atomic percentage x, leading to reduction of phase velocity in the film. Combining high Sc content AlScN films with high velocity substrates favors higher order guided surface acoustic wave (SAW) modes [1]. This study investigates higher order SAW modes in epitaxial AlScN on sapphire (Al2O3). Their dispersion for Pt metallized epitaxial AlScN films on Al2O3was computed for two different propagation directions. Computed phase velocity dispersion branches were experimentally verified by the characterization of fabricated SAW resonators. The results indicated four wave modes for the propagation direction (0°, 0°, 0°), featuring 3D polarized displacement fields. The sensitivity of the wave modes to the elastic constants of AlScN was investigated. It was shown that due to the 3D polarization of the waves, all elastic constants have an influence on the phase velocity and can be measured by suitable weighting functions in material constant extraction procedures.