Refine
Document Type
- Conference Proceeding (4)
- Article (unreviewed) (2)
- Article (reviewed) (1)
- Report (1)
Conference Type
- Konferenzartikel (4)
Has Fulltext
- no (8)
Is part of the Bibliography
- yes (8)
Keywords
- Intelligentes Stromnetz (2)
- Kraftwerk (2)
- Communication networks (1)
- Computersicherheit (1)
- Energieflexibilität (1)
- Energiemarkt (1)
- Industrieunternehmen (1)
- Internet Overlay networks (1)
- KMU (1)
- Klein- und Mittelbetrieb (1)
Institute
Open Access
- Closed Access (3)
- Closed (2)
- Open Access (2)
- Diamond (1)
The design of control systems in large-scale CPV power plants will be more challenging in the future. Reasons are the increasing size of power plants, the requirements of grid operators, new functions, and new technological trends in industrial automation or communication technology. Concepts and products from fixed-mounted PV can only partly be adopted since control systems for sun-tracking installations are considerable more complex due to the higher quantity of controllable entities. The objective of this paper is to deliver design considerations for next generation control systems. Therefore, the work identifies new applications of future control systems categorized into operation, monitoring and maintenance domains. The key-requirements of the technical system and the application layer are identified. In the resulting section, new strategies such as a more decentralized architecture are proposed and design criteria are derived. The contribution of this paper should allow manufacturers and research institutes to consider the design criteria in current development and to place further research on new functions and control strategies precisely.
GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft
(2024)
Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde.
Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren.
This paper analyzes the applicability of existing communication technology on the Smart Grid. In particular it evaluates how networks, e.g. Peer-to-Peer (P2P) and decentralized Virtual Private Network (VPN) can help set up an agent-based system. It is expected that applications on Smart Grid devices will become more powerful and be able to operate without a central control instance. We analyze which requirements agents and Smart Grid devices place on communication systems and validate promising approaches. The main focus is to create a logical overlay network that provides direct communication between network nodes. We provide a comparison of different approaches of P2P networks and mesh-VPNs. Finally the advantages of mesh-VPN for agent-based systems are worked out.
Energy management in distribution grids is one of the key challenges that needs to be overcome to increase the share of fluctuating renewable energies. Current control systems for energy management mainly demonstrate centralized- or decentralized-hierarchical control structures. Very few systems manifest a fully decentralized multiagent-based control structure. Multiagent-based control systems promise to be an advantageous approach for the future distributed energy supply system because no central control entity is necessary, which eases parameterization in case of grid topology changes, and the agents are more stable against failures and changes of control topologies. Research is necessary to prove these benefits. In this study, we introduce a design of a multiagent-based voltage control system for low-voltage grids. In detail we introduce cooperative decision-making processes and software solutions that allow the agents to perceive and control their environment, the agent-discovery and localization in different types of communication networks, agent-to-agent communication, and the integration of the multiagent system in existing grid-control infrastructures. Furthermore, the study proposes how different existing technologies can be combined into an applicable multiagent-based voltage control system: the Java/OSGi-based OpenMUC framework allows a generic field–device interaction; peer-to-peer discovery and session establishment functionalities are combined with the agent communication defined by the Foundation for Intelligent Physical Agents (FIPA). The ripple control-signal technology is applied as a fallback communication between the agent and a central grid-control center.
Die direkte Vermarktung von Strom aus Wind und Sonne stellt einen wichtigen Schritt der Energiewende dar. Einerseits kann durch die Marktintegration die Unabhängigkeit von EEG-Subventionen gelingen. Andererseits wird über diese Mechanismen die Stromerzeugung an der Nachfrage orientiert, wodurch zur Stabilität des Stromnetzes beigetragen wird. Ein Beispiel dafür ist die lokale Vermarktung von PV-Strom in einem Mietshaus. Für deren Umsetzung benötigen die Akteure ein Mess- und Steuerungssystem, dass vor Ort Zähler- und Anlagendaten erfasst und die Abrechnung der Mieter vereinfacht. Außerdem sollte es Kennwerte wie beispielsweise den PV-Anteil berechnen und gegebenenfalls ein Blockheizkraftwerk steuern. Weder die Zählersysteme der Messstellenbetreiber noch die Steuerungssysteme von PV- oder Blockheizkraftwerken erfüllen diese Anforderungen ausreichend. In der Forschung ist man währenddessen bereits einen Schritt weiter und arbeitet an technischen Systemen, die für wesentlich komplexere Energiesystem- und Markttopologien ausgelegt werden. In dieser Arbeit werden die neuen technischen Anforderungen der Direktvermarktung in einem Mietshaus identifiziert und mit dem Stand aktueller Marktprodukte sowie dem System »OpenMUC« aus der Forschung verglichen.
The design of control systems of concentrator photovoltaic power plants will be more challenging in the future. Reasons are cost pressure, the increasing size of power plants, and new applications for operation, monitoring and maintenance required by grid operators, manufacturers and plant operators. Concepts and products for fixed-mounted photovoltaic can only partly be adapted since control systems for concentrator photovoltaic are considerable more complex due to the required high accurate sun-tracking. In order to assure reliable operation during a lifetime of more than 20 years, robustness of the control system is one crucial design criteria. This work considers common engineering technics for robustness, safety and security. Potential failures of the control system are identified and their effects are analyzed. Different attack scenarios are investigated. Outcomes are design criteria that encounter both: failures of system components and malicious attacks on the control system of future concentrator photovoltaic power plants. Such design criteria are a transparent state management through all system layers, self-tests and update capabilities for security concerns. The findings enable future research to develop a more robust and secure control system for concentrator photovoltaics when implementing new functionalities in the next generation.
The communication system of a large-scale concentrator photovoltaic power plant is very challenging. Manufacturers are building power plants having thousands of sun tracking systems equipped with communication and distributed over a wide area. Research is necessary to build a scalable communication system enabling modern control strategies. This poster abstract describes the ongoing work on the development of a simulation model of such power plants in OMNeT++. The model uses the INET Framework to build a communication network based on Ethernet. First results and problems of timing and data transmission experiments are outlined. The model enables research on new communication and control approaches to improve functionality and efficiency of power plants based on concentrator photovoltaic technology.
Multi-agent systems are a subject of continuously increasing interest in applied technical sciences. Smart grids are one evolving field of application. Numerous smart grid projects with various interpretations of multi-agent systems as new control concept arose in the last decade. Although several theoretical definitions of the term ‘agent’ exist, there is a lack of practical understanding that might be improved by clearly distinguishing the agent technologies from other state-of-the-art control technologies. In this paper we clarify the differences between controllers, optimizers, learning systems, and agents. Further, we review most recent smart grid projects, and contrast their interpretations with our understanding of agents and multi-agent systems. We point out that multi-agent systems applied in the smart grid can add value when they are understood as fully distributed networks of control entities embedded in dynamic grid environments; able to operate in a cooperative manner and to automatically (re-)configure themselves.