Refine
Document Type
Conference Type
- Konferenzartikel (13)
- Sonstiges (1)
Is part of the Bibliography
- yes (20)
Keywords
- Deep Leaning (4)
- Machine Learning (3)
- Robustness (3)
- Artificial Intelligence (2)
- Deep learning (2)
- Adversarial Robustness (1)
- Bluetooth Low Energy (1)
- CNN (1)
- Challenges in Action Recognition (1)
- Collaboration of Academia and Industry (1)
Institute
Open Access
- Open Access (15)
- Bronze (8)
- Closed Access (3)
- Diamond (3)
- Closed (2)
- Grün (2)
We present a novel approach that utilizes BLE packets sent from generic BLE capable radios to synthesize an FSK-(like) addressable wake-up packet. A wake-up receiver system was developed from off-the-shelf components to detect these packets. It makes use of two differential signal paths separated by passive band-pass filters. After the rectification of each channel a differential amplifier compares the signals and the resulting wake-up signal is evaluated by an AS3933 wake-up receiver IC. Overall, the combination of these techniques contributes to a BLE compatible wake-up system which is more robust than traditional OOK wake-up systems. Thus, increasing wake-up range, while still maintaining a low energy budget. The proof-of-concept setup achieved a sensitivity of -47.8 dBm at a power consumption of 18.5 uW during passive listening. The system has a latency of 31.8 ms with a symbol rate of 1437 Baud.
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
(2021)
We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain.
A novel Bluetooth Low Energy advertising scan algorithm is presented for hybrid radios that are additionally capable to measure energy on Bluetooth channels, e.g. as they would need to be compliant with IEEE 802.15.4. Scanners applying this algorithm can achieve a low latency whilst consuming only a fraction of the power that existing mechanisms can achieve at a similar latency. Furthermore, the power consumption can scale with the incoming network traffic and in contrast to the existing mechanisms, scanners can operate without any frame loss given ideal network conditions. The algorithm does not require any changes to advertisers, hence, stays compatible with existing devices. Performance evaluated via simulation and experiments on real hardware shows a 37 percent lower power consumption compared to the best existing scan setting while even achieving a slightly lower latency which proves that this algorithm can be used to improve the quality of service of connection-less Bluetooth communication or reduce the connection establishment time of connection-oriented communication.
This work compares the performance of Bluetooth Mesh implementations on real chipsets against the ideal implementation of the specification. Measurements are taken in experimental settings and reveal non-idealities in the underlying Bluetooth Low Energy specification in real chipsets and in the implementation of Mesh, which introduces an unruly transmission as well as reception behavior. These effects lead to an impact on transmission rate, reception rate, latency, as well as a more significant impact on the average power consumption.
Assessing the robustness of deep neural networks against out-of-distribution inputs is crucial, especially in safety-critical domains like autonomous driving, but also in safety systems where malicious actors can digitally alter inputs to circumvent safety guards. However, designing effective out-of-distribution tests that encompass all possible scenarios while preserving accurate label information is a challenging task. Existing methodologies often entail a compromise between variety and constraint levels for attacks and sometimes even both. In a first step towards a more holistic robustness evaluation of image classification models, we introduce an attack method based on image solarization that is conceptually straightforward yet avoids jeopardizing the global structure of natural images independent of the intensity. Through comprehensive evaluations of multiple ImageNet models, we demonstrate the attack's capacity to degrade accuracy significantly, provided it is not integrated into the training augmentations. Interestingly, even then, no full immunity to accuracy deterioration is achieved. In other settings, the attack can often be simplified into a black-box attack with model-independent parameters. Defenses against other corruptions do not consistently extend to be effective against our specific attack.
Project website: https://github.com/paulgavrikov/adversarial_solarization
Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of \emph{learned} convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1×1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3×3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (\textit{i.i.d.}) nature of default initialization techniques.
Modern CNNs are learning the weights of vast numbers of convolutional operators. In this paper, we raise the fundamental question if this is actually necessary. We show that even in the extreme case of only randomly initializing and never updating spatial filters, certain CNN architectures can be trained to surpass the accuracy of standard training. By reinterpreting the notion of pointwise ($1\times 1$) convolutions as an operator to learn linear combinations (LC) of frozen (random) spatial filters, we are able to analyze these effects and propose a generic LC convolution block that allows tuning of the linear combination rate. Empirically, we show that this approach not only allows us to reach high test accuracies on CIFAR and ImageNet but also has favorable properties regarding model robustness, generalization, sparsity, and the total number of necessary weights. Additionally, we propose a novel weight sharing mechanism, which allows sharing of a single weight tensor between all spatial convolution layers to massively reduce the number of weights.
It is common practice to apply padding prior to convolution operations to preserve the resolution of feature-maps in Convolutional Neural Networks (CNN). While many alternatives exist, this is often achieved by adding a border of zeros around the inputs. In this work, we show that adversarial attacks often result in perturbation anomalies at the image boundaries, which are the areas where padding is used. Consequently, we aim to provide an analysis of the interplay between padding and adversarial attacks and seek an answer to the question of how different padding modes (or their absence) affect adversarial robustness in various scenarios.
Currently, many theoretical as well as practically relevant questions towards the transferability and robustness of Convolutional Neural Networks (CNNs) remain unsolved. While ongoing research efforts are engaging these problems from various angles, in most computer vision related cases these approaches can be generalized to investigations of the effects of distribution shifts in image data. In this context, we propose to study the shifts in the learned weights of trained CNN models. Here we focus on the properties of the distributions of dominantly used 3×3 convolution filter kernels. We collected and publicly provide a dataset with over 1.4 billion filters from hundreds of trained CNNs, using a wide range of datasets, architectures, and vision tasks. In a first use case of the proposed dataset, we can show highly relevant properties of many publicly available pre-trained models for practical applications: I) We analyze distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like visual category of the dataset, task, architecture, or layer depth. Based on these results, we conclude that model pre-training can succeed on arbitrary datasets if they meet size and variance conditions. II) We show that many pre-trained models contain degenerated filters which make them less robust and less suitable for fine-tuning on target applications. Data & Project website: https://github.com/paulgavrikov/cnn-filter-db.
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high confidence. An common defense mechanism is regularization through adversarial training which injects worst-case perturbations back into training to strengthen the decision boundaries, and to reduce overfitting. In this context, we perform an investigation of 3 × 3 convolution filters that form in adversarially- trained models. Filters are extracted from 71 public models of the ℓ ∞ -RobustBench CIFAR-10/100 and ImageNet1k leaderboard and compared to filters extracted from models built on the same architectures but trained without robust regularization. We observe that adversarially-robust models appear to form more diverse, less sparse, and more orthogonal convolution filters than their normal counterparts. The largest differences between robust and normal models are found in the deepest layers, and the very first convolution layer, which consistently and predominantly forms filters that can partially eliminate perturbations, irrespective of the architecture.