Refine
Year of publication
Document Type
- Conference Proceeding (33)
- Article (reviewed) (7)
- Part of a Book (5)
- Article (unreviewed) (4)
- Book (1)
- Other (1)
- Working Paper (1)
Conference Type
- Konferenzartikel (33)
Is part of the Bibliography
- yes (52)
Keywords
- TRIZ (12)
- Innovation (11)
- Design (5)
- Künstliche Intelligenz (5)
- Artificial Intelligence (4)
- TRIZ methodology (4)
- eco-innovation (4)
- Kreativität (3)
- Problemlösen (3)
- Produktentwicklung (3)
Institute
Open Access
- Open Access (28)
- Closed Access (14)
- Closed (6)
- Diamond (5)
- Bronze (1)
CONTEXT
The paper addresses the needs of medium and small businesses regarding qualification of R&D specialists in the interdisciplinary cross-industry innovation, which promises a considerable reduction of investments and R&D expenditures. The cross-industry innovation is commonly understood as identification of analogies and transfer of technologies, processes, technical solutions, working principles or business models between industrial sectors. However, engineering graduates and specialists frequently lack the advanced skills and knowledge required to run interdisciplinary innovation across the industry boundaries.
PURPOSE
The study compares the efficiency of the cross-industry innovation methods in one semester project-oriented course. It identifies the individual challenges and preferred working techniques of the students with different prior knowledge, sets of experiences, and cultural contexts, which require attention by engineering educators.
APPROACH
Two parallel one-semester courses were offered to the mechanical and process engineering students enrolled in bachelor’s and master’s degree programs at the faculty of mechanical and process engineering. The students from different years of study were working in 12 teams of 3…6 persons each on different innovation projects, spending two hours a week in the classroom and additionally on average two hours weekly on their project research. Students' feedback and self-assessments concerning gained skills, efficiency of learned tools and intermediate findings were documented, analysed, and discussed regularly along the course.
RESULTS
Analysis of numerous student projects allows to compare and to select the tools most appropriate for finding cross-industry solutions, such as thinking in analogies, web monitoring, function-oriented search, databases of technological effects and processes, special creativity techniques and others. The utilization of learned skills in practical innovation work strengthens the motivation of students and enhances their entrepreneurial competences. Suggested learning course and given recommendations help facilitate sustainable education of ambitious specialists.
CONCLUSIONS
The structured cross-industry innovation can be successfully run as a systematic process and learned in one semester course. The choice of the preferred working teqniques made by the students is affected by their prior knowledge in science, practical experience, and cultural contexts. Major outcomes of the students’ innovation projects such as feasibility, novelty and customer value of the concepts are primarily influenced by students’ engineering design skills, prior knowledge of the technologies, and industrial or business experience.
The comprehensive assessment method includes 80 innovation performance parameters and 10 key indicators of innovation capability, such as innovation process performance, innovating system performance, market and customer orientation, technology orientation, creativity, leadership, communication and knowledge management, risk and cost management, innovative climate, and innovation competences. The cross-industry study identifies parameters critical for innovation success and reveals different innovation performance patterns in companies.
Accelerated transformation of the society and industry through digi-talization, artificial intelligence and other emerging technologies has intensified the need for university graduates that are capable of rapidly finding breakthrough solutions to complex problems, and can successfully implement innovation con-cepts. However, there are only few universities making significant efforts to com-prehensively incorporate creative and systematic tools of TRIZ (theory of in-ventive problem solving) and KBI (knowledge-based innovation) into their de-gree structure. Engineering curricula offer little room for enhancing creativity and inventiveness by means of discipline‐specific subjects. Moreover, many ed-ucators mistakenly believe that students are either inherently creative, or will in-evitably obtain adequate problem-solving skills as a result of their university study. This paper discusses challenges of intelligent integration of TRIZ and KBI into university curricula. It advocates the need for development of standard guidelines and best-practice recommendations in order to facilitate sustainable education of ambitious, talented, and inventive specialists. Reflections of educa-tors that teach TRIZ and KBI to students from mechanical, electrical, process engineering, and business administration are presented.
Economic growth and ecological problems have pushed industries to switch to eco-friendly technologies. However, environmental impact is still often neglected since production efficiency remains the main concern. Patent analysis in the field of process engineering shows that, on the one hand, some eco-issues appear as secondary problems of the new technologies, and on the other hand, eco-friendly solutions often show lower efficiency or performance capability. The study categorizes typical environmental problems and eco-contradictions in the field of process engineering involving solids handling and identifies underlying inventive principles that have a higher value for environmental innovation. Finally, 42 eco-innovation methods adapting TRIZ are chronologically presented and discussed.
Economic growth and ecological problems motivate industries to apply eco-friendly technologies and equipment. However, environmental impact, followed by energy and material consumption still remain the main negative implications of the technological progress in process engineering. Based on extensive patent analysis, this paper assigns more than 250 identified eco-innovation problems and requirements to 14 general eco-categories with energy consumption and losses, air pollution, and acidification as top issues. It defines primary eco-engineering contradictions, in case eco-problems appear as negative side effects of the new technologies, and secondary eco-engineering contradictions, if eco-friendly solutions have new environmental drawbacks. The study conceptualizes a correlation matrix between the eco-requirements for prediction of typical eco-contradictions on example of processes involving solids handling. Finally, it summarizes major eco-innovation approaches including Process Intensification in process engineering, and chronologically reviews 66 papers on eco-innovation adapting TRIZ methodology. Based on analysis of 100 eco-patents, 58 process intensification technologies, and literature, the study identifies 20 universal TRIZ inventive principles and sub-principles that have a higher value for environmental innovation.
The modern TRIZ is today considered as the most organized and comprehensive methodology for knowledge-driven invention and innovation. When applying TRIZ for inventive problem solving, the quality of obtained solutions strongly depends on the level of completeness of the problem analysis and the abilities of designers to identify the main technical and physical contradictions in the inventive situation. These tasks are more complex and hence more time consuming in the case of interdisciplinary systems. Considering a mechatronic product as a system resulting from the integration of different technologies, the problem definition reveals two kinds of contradictions: 1) the mono-disciplinary contradictions within a homogenous sub-system, e.g., only mechanical or only electrical; 2) the interdisciplinary contradictions resulting from the interaction of the mechatronic sub-systems (mechanics, electrics, control and software). This paper presents a TRIZ-based approach for a fast and systematic problem definition and contradiction identification, which could be useful both for engineers and students facing mechatronic problems. It also proposes some useful problem formulation tech-niques such as the System Circle Diagram, the enhancement of System Operator with the Evolution Patterns, the extension of MATChEM-IB operator with Infor-mation field and Human Interactions, as well as the Cause-Effect-Matrix.
Process engineering (PE) focuses on the design, operation, control and optimization of chemical, physical and biological processes and has applications in many industries. Process intensification (PI) is the key development approach in the modern process engineering. The theory of inventive problem solving (TRIZ) is today considered as the most comprehensive and systematically organized invention knowledge and creative thinking methodology. This paper analyses the opportunities of TRIZ application in PE and especially in combination with PI. In this context the paper outlines the major challenges for TRIZ application in PE, conceptualizes a possible TRIZ-based approach for process intensification and problem solving in PE, and defines the corresponding research agenda. It also presents the results of the original empirical innovation research in the field of solid handling in the ceramic industry, demonstrates a method for identification and prediction of contradictions and introduces the concept of the probability of contradiction occurrence. Additionally, it describes a technique of process mapping that is based on the function and multi-screen analysis of the processes. This technique is illustrated by a case study dealing with granulation process. The research work presented in this paper is a part of the European project “Intensified by Design® platform for the intensification of processes involving solids handling”.
The research work analyses the relationship of 155 Process Intensification (PI) technologies to the components of the Theory of Inventive Problem Solving (TRIZ). It outlines TRIZ inventive principles frequently used in PI, and identifies opportunities for enhancing systematic innovation in process engineering by applying complementary TRIZ and PI. The study also proposes 70 additional inventive TRIZ sub-principles for the problems frequently encountered in process engineering, resulting in the advanced set of 160 inventive operators, assigned to the 40 TRIZ inventive principles. Finally, we analyse and discuss inventive principles used in 150 patent documents published in the last decade in the field of solid handling in the ceramic and pharmaceutical industries.
Identification of Secondary Problems of New Technologies in Process Engineering by Patent Analysis
(2018)
The implementation of new technologies in production plants often causes negative side effects and drawbacks. In this context, the prediction of the secondary problems and risks can be used advantageously for selecting best solutions for intensification of the processes. The proposed method puts primary emphasis on systematic and fast anticipation of secondary problems using patent documents, and on extraction and prediction of possible engineering contradictions within novel technical systems. The approach comprises three ways to find secondary problems: (a) direct knowledge-based identification of secondary problems in new technologies or equipment; (b) identification of secondary problems of prototypes mentioned in patent citation trees; and (c) prediction of negative side effects using the correlation matrix for invention goals and secondary problems in a specific engineering domain.
In recent years, the application of TRIZ methodology in the process engineering has been found promising to develop comprehensive inventive solution concepts for process intensification (PI). However, the effectiveness of TRIZ for PI is not measured or estimated. The paper describes an approach to evaluate the efficiency of TRIZ application in process intensification by comparing six case studies in the field of chemical, pharmaceutical, ceramic, and mineral industries. In each case study, TRIZ workshops with the teams of researchers and engineers has been performed to analyze initial complex problem situation, to identify problems, to generate new ideas, and to create solution concepts. The analysis of the workshop outcomes estimates fulfilment of the PI-goals, impact of secondary problems, variety and efficiency of ideas and solution concepts. In addition to the observed positive effect of TRIZ application, the most effective inventive principles for process engineering have been identified.