Refine
Year of publication
- 2014 (1)
Document Type
Language
- English (1)
Has Fulltext
- no (1)
Is part of the Bibliography
- yes (1)
Keywords
- Algorithmus (1)
- Funktechnik (1)
- Überwachung (1)
Institute
Open Access
- Open Access (1)
The detection of signals and the estimation of signal bandwidth is a perpetual topic in radio communication systems. Both issues are extremely challenging, since the wireless channel is unreliable in nature. A radio monitoring system faces the most difficult conditions in this task; it normally scans a wide frequency range of several hundred MHz and has to detect a multitude of different signals. Owing to the computational costs, the radio monitoring systems use nowadays mainly energy detectors based on fast Fourier transform spectrum analysers and a static threshold, defined by a previous noise estimation. A refined algorithm based on the self-splitting competitive learning (SSCL) clustering is presented that quantises the power spectral density (PSD) according to the present signal power levels. The quantisation of the PSD results in a promising channel segmentation. In contrast to the traditional threshold evaluation, this approach is independent of a previously assumed noise estimation and therefore more robust against noise level and noise distribution changes. The presented definition of the essential cluster validity criterion is key for a successful channel segmentation. Furthermore, the novel postprocessing of the clustering result introduced in this study evaluates the progression of the PSD data and significantly improves the channel segmentation.