Refine
Document Type
- Article (reviewed) (4)
- Patent (3)
- Conference Proceeding (2)
Conference Type
- Konferenzartikel (2)
Is part of the Bibliography
- yes (9)
Keywords
- biomaterials (3)
- debinding (2)
- molybdenum (2)
- Additive Manufacturing (1)
- Aluminum (1)
- Binder-based AM (1)
- Binder-basiertes AM (1)
- Dampferzeugung (1)
- Debinding (1)
- Entbinderung (1)
Institute
Open Access
- Open Access (5)
- Closed (4)
- Bronze (3)
- Gold (1)
- Hybrid (1)
Titanium and stainless steel are commonly known as osteosynthesis materials with high strength and good biocompatibility. However, they have the big disadvantage that a second operation for hardware removal is necessary. Although resorbable systems made of polymers or magnesium are increasingly used, they show some severe adverse foreign body reactions or unsatisfying degradation behavior. Therefore, we started to investigate molybdenum as a potential new biodegradable material for osteosynthesis in craniomaxillofacial surgery. To characterize molybdenum as a biocompatible material, we performed in vitro assays in accordance with ISO Norm 10993-5. In four different experimental setups, we showed that pure molybdenum and molybdenum rhenium alloys do not lead to cytotoxicity in human and mouse fibroblasts. We also examined the degradation behavior of molybdenum by carrying out long-term immersion tests (up to 6 months) with molybdenum sheet metal. We showed that molybdenum has sufficient mechanical stability over at least 6 months for implants on the one hand and is subject to very uniform degradation on the other. The results of our experiments are very promising for the development of new resorbable osteosynthesis materials for craniomaxillofacial surgery based on molybdenum.
Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*
(2022)
Binder-based additive manufacturing processes for metallic
AM components in a wide range of applications usually use
organic binders and process-related additives that must be
thermally removed before sintering. Debinding processes are
typically parameterized empirically and thus far from the optimum.
Since debinding based on thermal decomposition processes
of organic components and the subsequent thermochemical
reactions between process atmosphere and metal
powder materials make uncomplicated parameterization difficult,
in-situ instrumentation was introduced at Fraunhofer
IFAM. This measurement method relies on infrared spectroscopy
and mass spectrometry in various furnace concepts to
understand the gas processes of decomposition of organic
components and the subsequent thermochemical reactions
between the carrier gas atmosphere and the metal part, as well
as their kinetics. This method enables an efficient optimization
of the temperature-time profiles and the required atmosphere
composition to realize dense AM components with low contamination.
In the paper, the optimization strategy is presented,
and the achievable properties are illustrated using a fused
filament fabrication (FFF) component example made of 316L
stainless steel.
Method and system for extractin metal and oxygen from powdered metal oxides (EP000004170066A2)
(2023)
A method for extracting metal and oxygen from powdered metal oxides in electrolytic cell is proposed, the electrolytic cell comprising a container, a cathode, an anode and an oxygen-ion-conducting membrane, the method comprising providing a solid oxygen ion conducting electrolyte powder into a container, providing a feedstock comprising at least one metal oxide in powdered form into the container, applying an electric potential across the cathode and the anode, the cathode being in communication with the electrolyte powder and the anode being in communication with the membrane in communication with the electrolyte powder, such that at least one respective metallic species of the at least one metal oxide is reduced at the cathode and oxygen is oxidized at the anode to form molecular oxygen, wherein the potential across the cathode and the anode is greater than the dissociation potential of the at least one metal oxide and less than the dissociation potential of the solid electrolyte powder and the membrane.
Bei der Vorrichtung zum Verdampfen einer Flüssigkeit ist eine offenporöse Struktur (1) in einem Gehäuse (8) angeordnet, die zumindest bereichsweise als eine Heizvorrichtung ausgebildet oder mittels einer externen Heizvorrichtung oder Bereiche der offenporösen Struktur (1) auf eine Temperatur, die mindestens der Siedetemperatur der jeweiligen Flüssigkeit entspricht, erwärmbar ist. Die Flüssigkeit ist in einem außerhalb des Gehäuses (8) angeordneten Reservoir (4), mit einer Menge aufgenommen, die während des Betriebs eine kontinuierliche Verdampfung von Flüssigkeit ermöglicht. Das Reservoir ist über mindestens eine Leitung (3) für Flüssigkeit mit dem Gehäuse (8) verbunden und in der mindestens einen Leitung (3) ist/sind ein Ventil und/oder eine Pumpe oder ein Verdichter (5) angeordnet. Die Leitung (3) mündet in mindestens eine Öffnung mindestens einer Düse (2) oder mindestens eine Austrittsöffnung und die Düse (2), deren Öffnung(en) und/oder die mindestens eine Austrittsöffnung der Leitung (3) ist/sind so angeordnet, dass Flüssigkeit auf Oberflächenbereiche der offenporösen Struktur (1) auftrifft und/oder in Poren der offenporösen Struktur (1) eintritt, wenn Flüssigkeit durch die eine Leitung (3) strömt.
Inadequate mechanical compliance of orthopedic implants can result in excessive strain of the bone interface, and ultimately, aseptic loosening. It is hypothesized that a fiber-based biometal with adjustable anisotropic mechanical properties can reduce interface strain, facilitate continuous remodeling, and improve implant survival under complex loads. The biometal is based on strategically layered sintered titanium fibers. Six different topologies are manufactured. Specimens are tested under compression in three orthogonal axes under 3-point bending and torsion until failure. Biocompatibility testing involves murine osteoblasts. Osseointegration is investigated by micro-computed tomography and histomorphometry after implantation in a metaphyseal trepanation model in sheep. The material demonstrates compressive yield strengths of up to 50 MPa and anisotropy correlating closely with fiber layout. Samples with 75% porosity are both stronger and stiffer than those with 85% porosity. The highest bending modulus is found in samples with parallel fiber orientation, while the highest shear modulus is found in cross-ply layouts. Cell metabolism and morphology indicate uncompromised biocompatibility. Implants demonstrate robust circumferential osseointegration in vivo after 8 weeks. The biometal introduced in this study demonstrates anisotropic mechanical properties similar to bone, and excellent osteoconductivity and feasibility as an orthopedic implant material.
Biodegradable metals have entered the implant market in recent years, but still do not show fully satisfactory degradation behaviour and mechanical properties. In contrast, it has been shown that pure molybdenum has an excellent combination of the required properties in this respect. We report on PM based screen printing of thin-walled molybdenum tubes as a processing step for medical stent manufacture. We also present data on the in vivo degradation and biocompatibility of molybdenum. The degradation of molybdenum wires implanted in the aorta of rats was evaluated by SEM and EDX. Biocompatibility was assessed by histological investigation of organs and analysis of molybdenum levels in tissue extracts and body fluids. Degradation rates of up to 13.5 μm/y were observed after 12 months. No histological changes or elevated molybdenum levels in organ tissues were observed. In summary, the results further underline that molybdenum is a highly promising biodegradable metallic material.
Fused Filament Fabrication (FFF) is a widespread additive manufacturing technology, mostly in the field of printable polymers. The use of filaments filled with metal particles for the manufacture of metallic parts by FFF presents specific challenges regarding debinding and sintering. For aluminium and its alloys, the sintering temperature range overlaps with the temperature range of thermal decomposition of many commonly used “backbone” polymers, which provide stability to the green parts. Moreover, the high oxygen affinity of aluminium necessitates the use of special sintering regimes and alloying strategies. Therefore, it is challenging to achieve both low porosity and low levels of oxygen and carbon impurities at the same time. Feedstocks compatible with the special requirements of aluminium alloys were developed. We present results on the investigation of debinding/sintering regimes by Fourier Transform Infrared spectroscopy (FTIR) based In-Situ Process Gas Analysis and discuss optimized thermal treatment strategies for Al-based FFF.
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen dreidimensionaler Bauteile, bei dem aus einem pulverförmigen Ausgangswerkstoff (1), der mit mindestens zwei Komponenten gebildet ist, wobei die Komponenten einen unterschiedlichen Dampfdruck bei gleicher Temperatur aufweisen, durch ein additives Strahlfertigungsverfahren ein Bauteil hergestellt wird. Mindestens ein Prozessparameter zum Betrieb mindestens eines zweidimensional auslenkbaren Energiestrahls wird derart eingestellt, dass sich der Dampfdruck mindestens einer der Komponenten ändert, so dass der Anteil dieses chemischen Elements oder dieser Legierung im Bauteilvolumen lokal definiert im Bauteil variiert wird.
The article investigates the development of a manufacturing route for highly porous titanium foams suitable for craniofacial surgery applications, particularly in cranioplasties. The study focuses on the polyurethane replication method for foam production and emphasizes reducing residual gas content, as it significantly affects the mechanical properties and suitability for approval of the foams. Various factors such as starting materials, solvent debinding, heating schedules, and hydrogen atmosphere are analyzed for their impact on residual gas content. It is shown that significant reductions in residual gas content can only be achieved by reworking each step of the process. A combination of initial solvent debinding of the PU template with dimethyl sulphoxide, reduction of suspension additives, use of coarser Gd. 1 powders, and an integrated debinding and sintering process under partial hydrogen atmosphere achieves a significant reduction in residual gas content. This way, the potential for producing titanium foams that comply with relevant standards for craniofacial implants is demonstrated.