Refine
Document Type
- Conference Proceeding (13)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Article (unreviewed) (1)
Conference Type
- Konferenzartikel (11)
- Sonstiges (2)
- Konferenz-Abstract (1)
- Konferenz-Poster (1)
Keywords
- Licht (3)
- Erweiterte Realität <Informatik> (2)
- Interaction metaphor (2)
- Virtual Reality (2)
- Virtuelle Realität (2)
- 3D interaction (1)
- AR SDK (1)
- Collision Avoidance (1)
- Collision avoidance (1)
- Flüssigkristall (1)
Institute
Open Access
- Closed Access (8)
- Open Access (7)
Seit 2011 beschäftigt sich die visionsbox GmbH mit der Erstellung von AR-Anwendungen. Momentan werden diese Apps auf Basis von Unity 3D und dem AR SDK Vuforia von Qualcomm erstellt. Der plattformunabhängige Ansatz von Unity 3D erlaubt es, sehr schnell Anwendungen für iOS als auch für Android zu kompilieren. Ein großer Nachteil des bestehenden Entwicklungskonzepts ist das Fehlen der Möglichkeit Inhalte zur Laufzeit aus dem Internet herunterzuladen. Eine Änderung oder Erweiterung der Anwendung ist nur über ein erneutes Kompilieren und erneutes Installieren der Applikation möglich. Dieser Updateprozess ist langwierig und wenig flexibel. Das Vorhandensein einer Anbindung ans Internet, ermöglicht jedoch prinzipiell das Herunterladen von neuen oder zusätzlichen Inhalten zur Laufzeit der Anwendung. Ziel dieser Master Thesis ist es, die Möglichkeiten des Nachladens von Anwendungsinhalten von einem eigenen Webserver zu evaluieren. Eine beispielhaft implementierte Anwendung soll die Machbarkeit für Android und iOS demonstrieren und gleichzeitig als Vorlage für bestehende und zukünftige AR-Anwendungen auf Basis von Unity3D und Vuforia dienen.
The International Year of Light and Light-Based Technologies 2015 (IYL 2015) was celebrated around the world. Worldwide activities were organized to highlight the impact of optics and photonics on life, science, economics, arts and culture, and also in education. With most of our activities at Offenburg University of Applied Sciences (Offenburg/Germany), we reached our own students and the general population of our region: - University for Children: “The Magic of Light“ winter lecture program and “Across the Universe with Relativity and Quantum Theory” summer lecture program - “Students Meet Scientists” - “A Century of General Relativity Theory” lecture program Nevertheless, with some of our activities we also engaged a worldwide audience: - IYL 2015 art poster collection (Magic of Light and No Football, Just Photonics) - Smart Interactive Projection - Twitter Wall - “Invisible Light” - Live broadcasting of the total lunar eclipse - Film Festival Merida Mexico The authors will highlight recent activities at our university dedicated to promote, celebrate, and create a legacy for the IYL 2015.
Walking interfaces offer advantages in navigation of VE systems over other types of locomotion. However, VR helmets have the disadvantage that users cannot see their immediate surroundings. Our publication describes the prototypical implementation of a virtual environment (VE) system, capable of detecting possible obstacles using an RGB-D sensor. In order to warn users of potential collisions with real objects while they are moving throughout the VE tracking area, we designed 4 different visual warning metaphors: Placeholder, Rubber Band, Color Indicator and Arrow. A small pilot study was carried out in which the participants had to solve a simple task and avoid any arbitrarily placed physical obstacles when crossing the virtual scene. Our results show that the Placeholder metaphor (in this case: trees), compared to the other variants, seems to be best suited for the correct estimation of the position of obstacles and in terms of the ability to evade them.
With this generation of devices, Virtual Reality (VR) has actually made it into the living rooms of end-users. These devices feature 6-DOF tracking, allowing them to move naturally in virtual worlds and experience them even more immersively. However, for a natural locomotion in the virtual, one needs a corresponding free space in the real environment. The available space is often limited, especially in everyday environments and under normal spatial conditions. Furnishings and objects of daily life can quickly become obstacles for VR users if they are not cleared away. Since the idea behind VR is to place users into a virtual world and to hide the real world as much as possible, invisible objects represent potential obstacles. The currently available systems offer only rudimentary assistance for this problem. If a user threatens to leave the space previously defined for use, a visual boundary is displayed to allow orientation within the space. These visual metaphors are intended to prevent users from leaving the safe area. However, there is no detection of potentially dangerous objects within this part of space. Objects that have not been cleared away or that have been added in the meantime may still become obstacles. This thesis shows how possible obstacles in the environment can be detected automatically with range imaging cameras and how users can be effectively warned about them in the virtual environment without significantly disturbing their sense of presence. Four different interactive visual metaphors are used to signalize the obstacles within the VE. With the help of a user study, the four signaling variants and the obstacle detection were evaluated and tested.
The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user’s hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation’s virtual elements by the user’s very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.