Refine
Document Type
- Conference Proceeding (13)
- Article (reviewed) (4)
- Contribution to a Periodical (2)
- Report (1)
Conference Type
- Konferenzartikel (12)
- Konferenz-Abstract (1)
Is part of the Bibliography
- yes (20)
Keywords
- energy harvesting (3)
- 3D printing (2)
- Robotics (2)
- vibration harvester (2)
- 3D Printed Force Sensor (1)
- 3D printed (1)
- 3D-Druck von leitfähigen Materialien (1)
- Artificial Feedback (1)
- Capacitive Liquid Level Sensor (1)
- Cobotik (1)
Institute
Open Access
- Open Access (8)
- Closed (6)
- Closed Access (6)
- Bronze (1)
- Gold (1)
Printed circuit boards (PCB) are a foundation of electronical devices in modern society. The fabrication of these boards requires various processes and machines. The utilisation of a robot with multiple tools can shorten the process chain compared to screen printing. In this paper a system is presented, which utilises an industrial six axis robot to manufacture
PCBs. The process flow and conversion process of the Gerber format into robot specific commands is presented. The advantages and challenges applying a robot to print circuits are discussed.
Novel approaches for the design of assistive technology controls propose the usage of eye tracking devices such as for smart wheelchairs and robotic arms. The advantages of artificial feedback, especially vibrotactile feedback, as opposed to their use in prostheses, have not been sufficiently explored. Vibrotactile feedback reduces the cognitive load on the visual and auditory channel. It provides tactile sensation, resulting in better use of assistive technologies. In this study the impact of vibration on the precision and accuracy of a head-worn eye tracking device is investigated. The presented system is suitable for further research in the field of artificial feedback. Vibration was perceivable for all participants, yet it does not produce any significant deviations in precision and accuracy.
Dieser Beitrag stellt die Möglichkeiten des 3D-Druckes unter der Berücksichtigung von Mensch-Roboter-Kollaborations-Anforderungen dar. Dabei werden die Vorteile mit besonderem Fokus auf die zusätzliche Gestaltungsfreiheit erläutert. Anhand von Beispielen wird der Stand der Technik bereits eingesetzter Sensorik sowie deren Notwendigkeit in Greifsystemen erläutert. Im weiteren Verlauf dieses Beitrags werden allgemeine Verfahren für die additive Verarbeitung von leitfähigen Materialien vorgestellt. Daran angeknüpft sind Beispiele speziell zur 3D-gedruckten Sensorik. Abgerundet wird der Beitrag mit einem Ausblick bezüglich 3D-gedruckter Sensorik in MRK-Greifsystemen.
Various methods of Digital Manufacturing (DM) have been available for the manufacturing of physical architectural models for several years. This paper highlights the advantages of 3D printing for digital manufacturing of detailed architectural models. In particular, the representation of architectural details and textures is treated. Furthermore, two new methods are being developed in order to improve the conditions for the application of digital manufacturing of architectural models.
The ability to change aerodynamic parameters of airfoils during flying can potentially save energy as well as reducing the noise made by the unmanned aerial vehicles (UAV) because of sharp edges of the airfoil and its rudders. In this paper, an approach for the design of an adaptive wing using a multi-material 3D printer is shown. In multi-material 3D printing, up to six different materials can be combined in one component. Thus, the user can determine the mixture and the spatial arrangement of this “digital material” in advance in the pre-processing software. First, the theoretical benefits of adaptive wings are shown, and already existing adaptive wings and concepts are explicated within a literature review. Then the additive manufacturing process using photopolymer jetting and its capabilities to print multiple materials in one part are demonstrated. Within the scope of a case study, an adaptive wing is developed and the necessary steps for the product development and their implementation in CAD are presented. This contribution covers the requirements for different components and sections of an adaptive wing designed for additive manufacturing using multiple materials as well as the single steps of development with its different approaches until the final design of the adaptive wing. The developed wing section is simulated, and qualitative tests in a wind tunnel are carried out with the wing segment. Finally, the additively manufactured wing segment is evaluated under technical and economic aspects.
Architecture models are an essential component of the development process and enable a physical representation of virtual designs. In addition to the conventional methods of model production using the machining of models made of wood, metal, plastic or glass, a number of additive manufacturing processes are now available. These new processes enable the additive manufacturing of architectural models directly from CAAD or BIM data. However, the boundary conditions applicable to the ability to manufacture models with additive manufacturing processes must also be considered. Such conditions include the minimum wall thickness, which depends on the applied additive manufacturing process and the materials used. Moreover, the need for the removal of support structures after the additive manufacturing process must also be considered. In general, a change in the scale of these models is only possible at very high effort. In order to allow these restrictions to be adequately incorporated into the CAAD model, this contribution develops a parametrized CAAD model that allows such boundary conditions to be modified and adapted while complying with the scale. Usability of this new method is illustrated and explained in detail in a case study. In addition, this article addresses the additive manufacturing processes including subsequent post-processing.
3D printing offers customisation capabilities regarding suspensions for oscillators of vibration energy harvesters. Adjusting printing parameters or geometry allows to influence dynamic properties like resonance frequency or bandwidth of the oscillator. This paper presents simulation results and measurements for a spiral shaped suspension printed with polylactic acid (PLA) and different layer heights. Eigenfrequencies have been simulated and measured and damping ratios have been experimentally determined.
This paper presents the development of a capacitive level sensor for robotics applications, which is designed for measurements of liquid levels during a pouring process. The proposed sensor design applies the advantages of guard electrodes in combination with passive shielding to increase resistance against external influences. This is important for reliable operations in rapidly changing measurement environments, as they occur in the field of robotics. The non-contact type sensor for liquid level measurement is the solution for avoiding contaminations and suit food guidelines. The designed sensor can be utilized in gastronomic applications. Two versions of the sensor were simulated, fabricated, and compared. The first version is based on copper electrodes, and the other type is fully 3D printed with electrodes made of conductive polylactic acid (PLA).
The development of a 3D printed force sensor for a gripper was studied applying an embedded constantan wire as sensing element. In the first section, the state of the art is explained. In the main section of the paper the modeling, simulation and verification of a sensor element are described for a three-point bending test made in accordance with the DIN EN ISO 178. The 3D printing process of the Fused Filament Fabrication (FFF) utilized for manufacturing the sensor samples in combination with an industrial robot are shown. A comparison between theory and practice are considered in detail. Finally, an outlook is given regarding the integration of the sensor element in gripper jaws.
Separation Estimation with Thermal Cameras for Separation Monitoring in Human-Robot Collaboration
(2022)
Human-Robot Collaborative applications have the drawback of being less efficient than their non-collaborative counterparts. One of the main reasons is, that the robot has to slow down when a human being is within the operating space of the robot. There are different approaches on dynamic speed and separation monitoring in human-robot collaborative applications. One approach additionally differentiates between human and non-human objects to increase efficiency in speed and separation monitoring. This paper proposes to estimate the separation distance by measuring the temperature of the approaching object. Measurements show that the measured temperature of a human being decreases with 1 deg C per meter distance from the sensor. This allows an estimation of separation between a robotic system and a human being.
A novelty solution for controls of assistive technology represent the usage of eye tracking devices such as for smart wheelchairs and robotic arms [10, 4]. In this context usage supporting methods like artificial feedback are not well explored. Vibrotactile feedback has shown to be helpful to decrease the cognitive load on the visual and auditive channels and can provide a perception of touch [17]. People with severe limitations of motor functions could benefit from eye tracking controls supported with vibrotactile feedback. In this study fundamental results will be presented in the design of an appropriate vibrotactile feedback system for eye tracking applications. We will show that a perceivable vibrotactile stimulus has no significant effect on the accuracy and precision of a head worn eye tracking device. It is anticipated that the results of this paper will lead to new insights in the design of vibrotactile feedback for eye tracking applications and eye tracking controls.
In this contribution, we present a novel 3D printed multi-material, electromagnetic vibration harvester. The harvester is based on a cantilever design and utilizes an embedded constantan wire within a matrix of polyethylene terephthalate glycol (PETG). A prototype has been manufactured with a combination of a fused filament fabrication (FFF) printer and a robot with a custom-made tool.
Avoiding collisions between a robot arm and any obstacle in its path is essential to human-robot collaboration. Multiple systems are available that can detect obstacles in the robot's way prior and subsequent to a collision. The systems work well in different areas surrounding the robot. One area that is difficult to handle is the area that is hidden by the robot arm. This paper focuses on pick and place maneuvers, especially on obstacle detection in between the robot arm and the table that robot is located on. It introduces the use of single pixel time-of-flight sensors to detect obstacles directly from the robot arm. The proposed approach reduces the complexity of the problem by locking axes of the robot that are not needed for the pick and place movement. The comparison of simulated results and laboratory measurements show concordance.
Schlussbericht IntelliKOMP
(2020)
Im Rahmen des Verbundprojektes IntelliKOMP sollten smarte Werkzeughalter und Spannfutter für Werkzeugmaschinen im Hinblick auf Industrie 4.0 entwickelt werden. Durch eine hochintegrierte Elektronik in den peripheren Maschinenkomponenten soll mittels Sensoren eine Datenerfassung, -verarbeitung und drahtlose -übertragung erfolgen. Durch diese Daten soll bspw. eine prädiktive Wartung ermöglicht werden.
A Review on Kinetic Energy Harvesting with Focus on 3D Printed Electromagnetic Vibration Harvesters
(2021)
The increasing amount of Internet of Things (IoT) devices and wearables require a reliable energy source. Energy harvesting can power these devices without changing batteries. Three-dimensional printing allows us to manufacture tailored harvesting devices in an easy and fast way. This paper presents the development of hybrid and non-hybrid 3D printed electromagnetic vibration energy harvesters. Various harvesting approaches, their utilised geometry, functional principle, power output and the applied printing processes are shown. The gathered harvesters are analysed, challenges examined and research gaps in the field identified. The advantages and challenges of 3D printing harvesters are discussed. Reported applications and strategies to improve the performance of printed harvesting devices are presented.
Human–robot collaborative applications have been receiving increasing attention in industrial applications. The efficiency of the applications is often quite low compared to traditional robotic applications without human interaction. Especially for applications that use speed and separation monitoring, there is potential to increase the efficiency with a cost-effective and easy to implement method. In this paper, we proposed to add human–machine differentiation to the speed and separation monitoring in human–robot collaborative applications. The formula for the protective separation distance was extended with a variable for the kind of object that approaches the robot. Different sensors for differentiation of human and non-human objects are presented. Thermal cameras are used to take measurements in a proof of concept. Through differentiation of human and non-human objects, it is possible to decrease the protective separation distance between the robot and the object and therefore increase the overall efficiency of the collaborative application.
This paper presents the development of an energy harvesting solution for a driven tool holder. The tool holder environment was analysed, a test stand built and the designed electromagnetic rotation harvester was evaluated. The reported harvester is based on low cost off-the-shelf components and 3D printed parts. The utilisation of SMD coils allows easy adaptation to changing parameters of the integration area. Energy harvesting in tool holders enables predictive maintenance or condition monitoring in the industrial production. These capabilities are mandatory nowadays in regards of IIoT. A reliable energy source is key for continuous monitoring. Changing batteries becomes obsolete. The results provide useful insight for future harvesters.
In der Forschungsgruppe um Prof. Dr. Thomas Wendt werden Themen in unterschiedlichsten Bereichen von Automatisierungstechnik über funktionale Sicherheit bis hin zur 3D-gedruckten Elektronik / Sensorik behandelt. Insgesamt arbeiten vier Doktoranden und vier Mitarbeiter an der Weiterentwicklung der verschiedenen Technologien, die in diesem Artikel zusammengefasst dargestellt sind.
In diesem Artikel werden die neuesten Entwicklungen in der Forschungsgruppe um Herrn Prof. Dr. Wendt vorgestellt. Es wird der Einsatz des neuen 3-D-Druckers der Firma Neotech, sowie die neuesten Entwicklungen im Leuchtturmprojekt Flitzmo beschrieben. Zudem konnte dieses Jahr mit dem Projekt zum Einsatz von Robotik im Bereich Assisted Living begonnen werden.