Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- Amplitude and Phase Errors (1)
- Calibration (1)
- Digital Beamforming (1)
- Error (1)
- MIMO (1)
- Monte-Carlo (1)
- Monte-Carlo Simulation (1)
- Self-Calibration (1)
Open Access
- Closed Access (2)
Analysis of Amplitude and Phase Errors in Digital-Beamforming Radars for Automotive Applications
(2020)
Fundamentally, automotive radar sensors with Digital-Beamforming (DBF) use several transmitter and receiver antennas to measure the direction of the target. However, hardware imperfections, tolerances in the feeding lines of the antennas, coupling effects as well as temperature changes and ageing will cause amplitude and phase errors. These errors can lead to misinterpretation of the data and result in hazardous actions of the autonomous system. First, the impact of amplitude and phase errors on angular estimation is discussed and analyzed by simulations. The results are compared with the measured errors of a real radar sensor. Further, a calibration method is implemented and evaluated by measurements.
Investigation of the Angle Dependency of Self-Calibration in Multiple-Input-Multiple-Output Radars
(2021)
Multiple-Input-Multiple-Output (MIMO) is a key technology in improving the angular resolution (spatial resolution) of radars. In MIMO radars the amplitude and phase errors in antenna elements lead to increase in the sidelobe level and a misalignment of the mainlobe. As the result the performance of the antenna channels will be affected. Firstly, this paper presents analysis of effect of the amplitude and phase errors on angular spectrum using Monte-Carlo simulations. Then, the results are compared with performed measurements. Finally, the error correction with a self-calibration method is proposed and its angle dependency is evaluated. It is shown that the values of the errors change with an incident angle, which leads to a required angle-dependent calibration.