Refine
Document Type
Conference Type
- Konferenzartikel (6)
Language
- English (8)
Has Fulltext
- no (8)
Is part of the Bibliography
- yes (8)
Keywords
- Ausbildung (4)
- Digitalisierung (3)
- Design (2)
- CAAD (1)
- Design , Produktgestaltung (1)
- Dimension 3 (1)
- Druck (1)
- Fertigungstechnik (1)
- Gesellschaft (1)
- Herstellung (1)
Institute
Open Access
- Closed Access (3)
- Open Access (3)
In addition to traditional methods in product development, the increasing availability of two new technologies, namely additive manufacturing AM (e.g. 3D-printing) and reverse engineering RE by means of 3D-scanning, offer new opportunities in product development processes today. However, to date only very few approaches exist those include these new technologies systematically in the education of students in the field of product development. This paper explores several ways in which AM and RE can productively be used in education. New to this approach is, on the one hand, that the students assemble and install the 3Dprinters themselves, and on the other hand, that they are introduced to an approach that combines 3D-scanning followed by 3D-printing. In different case studies is demonstrated that students in design education are able to autonomously research and realize technical possibilities and limitations of these technologies, as well as economic parameters and constraints.
Additive Manufacturing and Reverse Engineering have increasingly been gaining in importance over the past years. This paper investigates the current status of the implementation of these new technologies in design education and also identifies current shortcomings. Then it develops two new approaches for the teaching of the necessary expertise for the design of 3D-printed components and illustrates these with case studies. First, a workshop is presented in which students gain a broad understanding for the functionalities of additive manufacturing and the creative possibilities and limits of this process, through the assembly and installation of a 3D-printer. A second new approach is the combination of reverse engineering and 3D-printing. Thereby, students learn how to deal with this complex process chain. The result of these new approaches can e.g. be seen in the design guidelines for Additive Manufacturing, which were developed by the students themselves. At the same time, the students are able to estimate opportunities and limits of both technologies. Finally, the success of the new course contents and form is reviewed by an evaluation by the students.
This paper presents a new approach for the teaching of competence in additive manufacturing to engineering students in product development. Particularly new to this approach is the combination of the students' autonomous assembly and commissioning of a 3D-printer, and the independent development of guidelines for this new technology regarding the design of components. This way the students will be able to gain first practical experiences with the data preparation, the additive manufacturing process itself and also the required post-treatment of the 3D-printed parts. To allow the students a significantly deeper insight into the functioning of 3D-printing, the workshop Rapid Prototyping developed a new approach in the course of which the students first assemble a construction kit for a 3D-printer themselves and then commission the printer. This enables the students to gain a better understanding of the functionality and configuration of additive manufacturing. In a next step, the students used the 3D-printers they constructed themselves to produce components which they take from a database. Finally, the experiences of the students in the course of the workshop will be evaluated to review the effectiveness of the new approach.
In addition to traditional methods in product development, the increasing availability of two new 3D digital technologies, namely digital manufacturing (3D-printing) and digitizing of surfaces (3D-scanning), offer new opportunities in product development processes today. With regard to the systematic implementation of these technologies in the education of students in the field of product development, however, only a small number of approaches exist so far. This paper explores several ways in which 3D digital technologies can productively be used in design education. The innovative aspects here include that the students assemble and install the 3D-printers themselves, and that they are introduced to an approach that combines 3D-scanning followed by 3D-printing.
Application of Polymer Plaster Composites in Additive Manufacturing of High-Strength Components
(2015)
Today, 3D-printing with polymer plaster composites is a common method in Additive Manufacturing. This technique has proven to be especially suitable for the production of presentation models, due to the low cost of materials and the possibility to produce color-models. But nowadays it requires refinishing through the manual application of a layer of resin. However, the strength of these printed components is very limited, as the applied resin only penetrates a thin edge layer on the surface. This paper develops a new infiltration technique that allows for a significant increase in the strength of the 3D-printed component. For this process, the components are first dehydrated in a controlled two-tier procedure, before they are then penetrated with high-strength resin. The infiltrate used in this process differs significantly from materials traditionally used for infiltration. The result is an almost complete penetration of the components with high-strength infiltrate. As the whole process is computer-integrated, the results are also easier to reproduce, compared to manual infiltration. On the basis of extensive material testing with different testing specimen and testing methods, it can be demonstrated that a significant increase in strength and hardness can be achieved. Finally, this paper also considers the cost and energy consumption of this new infiltration method. As a result of this new technology, the scope of applicability of 3D-printing can be extended to cases that require significantly more strength, like the production of tools for the shaping of metals or used for the molding of plastics. Furthermore, both the process itself and the parameters used are monitored and can be optimized to individual requirements and different fields of application.