Refine
Document Type
- Article (reviewed) (23)
- Article (unreviewed) (2)
- Conference Proceeding (1)
Conference Type
- Konferenzartikel (1)
Has Fulltext
- no (26)
Is part of the Bibliography
- yes (26)
Keywords
- Adsorption (11)
- Metallorganisches Netzwerk (8)
- Hochdruck (4)
- Methan (4)
- Nanotechnologie (4)
- Kohlendioxid (3)
- Kupfer (3)
- Aufreinigung (2)
- Sorption (2)
- Wasserstoff (2)
Institute
Open Access
- Closed Access (16)
- Open Access (4)
- Closed (1)
Bud type carbon nanohorns (CNHs) are composed of carbon and have a closed conical tip at one end protruding from an aggregate structure. By employing a simple oxidation process in CO2 atmosphere, it is possible to open the CNH tips which increases their specific surface area by four fold. These tip opened CNHs combine the microporous nature of activated carbons and the crystalline mesoporous character of carbon nanotubes. The results for the high pressure CO2 gas adsorption of tip opened CNHs are reported herein for the first time and are found to be superior to traditional CO2 adsorbents like zeolites. The modified CNHs are also found to be promising materials for lithium ion batteries and the performance is found to be on a par with carbon nanotubes and carbon nanofibers.
Adsorption of N2 and CO2 on Activated Carbon, AlO(OH) Nanoparticles, and AlO(OH) Hollow Spheres
(2015)
Adsorption behaviors of nitrogen and CO2 on Norit R1 Extra and AlO(OH) nanoparticles and hollow spheres were measured under different temperature and pressure conditions using a magnetic suspension balance. Independent from the substrate investigated, all isotherms increase at lower pressure, reach a maximum, and then decrease with increasing pressure. In addition, selected experimental data were correlated with different model approaches and compared with reliable literature data. In case of CO2 on AlO(OH), capillary condensation was observed at two defined temperatures. The results suggest that the conversion of the liquid into a supercritical adsorbate phase does not take place suddenly.
Phosphate-based inorganic–organic hybrid nanoparticles (IOH-NPs) with the general composition [M]2+[Rfunction(O)PO3]2– (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3]2– is a fluorescent dye anion ([RdyeOPO3]2–), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO]2+[PUP]2–, [ZrO]2+[MFP]2–, [ZrO]2+[RRP]2–, and [ZrO]2+[DUT]2– (PUP = phenylumbelliferon phosphate, MFP = methylfluorescein phosphate, RRP = resorufin phosphate, DUT = Dyomics-647 uridine triphosphate). With pharmaceutical agents as functional anions ([RdrugOPO3]2–), drug transport and release of anti-inflammatory ([ZrO]2+[BMP]2–) and antitumor agents ([ZrO]2+[FdUMP]2–) with an up to 80% load of active drug is possible (BMP = betamethason phosphate, FdUMP = 5′-fluoro-2′-deoxyuridine 5′-monophosphate). A combination of fluorescent dye and drug anions is possible as well and shown for [ZrO]2+[BMP]2–0.996[DUT]2–0.004. Merging of functional anions, in general, results in [ZrO]2+([RdrugOPO3]1–x[RdyeOPO3]x)2– nanoparticles and is highly relevant for theranostics. Amine-based functional anions in [MgO]2+[RaminePO3]2– IOH-NPs, finally, show CO2 sorption (up to 180 mg g–1) and can be used for CO2/N2 separation (selectivity up to α = 23). This includes aminomethyl phosphonate [AMP]2–, 1-aminoethyl phosphonate [1AEP]2–, 2-aminoethyl phosphonate [2AEP]2–, aminopropyl phosphonate [APP]2–, and aminobutyl phosphonate [ABP]2–. All [M]2+[Rfunction(O)PO3]2– IOH-NPs are prepared via noncomplex synthesis in water, which facilitates practical handling and which is optimal for biomedical application. In sum, all IOH-NPs have very similar chemical compositions but can address a variety of different functions, including fluorescence, drug delivery, and CO2 sorption.
A series of isostructural 3D coordination polymers (3)∞[M(tdc)(bpy)] (M(2+) = Zn(2+), Cd(2+), Co(2+), Fe(2+); tdc(2-) = 2,5-thiophenedicarboxylate; bpy = 4,4'-bipyridine) was synthesized and characterized by X-ray diffraction, thermal analysis, and gas adsorption measurements. The materials show high thermal stability up to approximately 400 °C and a solvent induced phase transition. Single crystal X-ray structure determination was successfully performed for all compounds after the phase transition. In the zinc-based coordination polymer, various amounts of a second type of metal ions such as Co(2+) or Fe(2+) could be incorporated. Furthermore, the catalytic behavior of the homo- and heteronuclear 3D coordination polymers in an oxidation model reaction was investigated.
Pure component sorption isotherms of n-butane, isobutane, 1-butene and isobutene on the metal–organic framework (MOF) 3∞[Cu4(μ4-O)(μ2-OH)2(Me2trz-pba)4] at various temperatures between 283 K and 343 K and pressures up to 300 kPa are presented. The isotherms show a stepwise pore filling which is typical for structurally flexible materials with broad adsorption–desorption hysteresis loops. Gate opening pressures in their endemic characteristic depend on the used hydrocarbon gases. From all investigated gases only the isotherms of 1-butene present a second step at a relative pressure above p/p0 = 0.55. As a consequence, only 1-butene can fully open the framework resulting in a pore volume of 0.54 cm3 g−1. This result is in good agreement with the value of 0.59 cm3 g−1 calculated based on single crystal structure data. The isosteric heat of adsorption was calculated from the experimental isotherms for all C4-isomers. At low loadings the isosteric heat is in a narrow region between 41 and 49 kJ mol−1. Moreover, in situ XRD measurements at different relative hydrocarbon pressures were performed at 298 K for the C4-isomers. The differences in the pressure-depending powder diffraction patterns indicate phase transitions as a result of adsorption. Similar diffraction patterns were observed for all C4-hydrocarbons, except 1-butene, where the second step at higher relative pressure (p/p0 > 0.55) is accompanied by an additional phase transition. This powder pattern resembles that of the as-synthesized MOF material containing solvent molecules in the pore system. The resulting structural changes of the material during guest and pressure induced external stimuli are evidenced by the new coupled XRD adsorption equipment.
Eine neue Prozessidee zur Auftrennung racemischer Wirkstoffe unter Verwendung nanoskaliger AlO(OH)‐Hohlkugeln als Adsorbens und überkritischen Kohlenstoffdioxides (sc‐CO2) als Lösungsmittel wird vorgestellt. Zur Auslegung des Prozesses werden Untersuchungen zur Abscheidung der racemischen Wirkstoffe (RS)‐Flurbiprofen, (RS)‐Ibuprofen, (RS)‐Ketoprofen und den reinen Enantiomeren (R)‐Flurbiprofen, (S)‐Ibuprofen und (S)‐Ketoprofen an AlO(OH)‐Hohlkugeln präsentiert und bewertet. Zudem werden Adsorptionsdaten von gasförmigem CO2 an den Hohlkugeln und kommerziellen AlO(OH)‐Partikeln, die mit einer Magnetschwebewaage ermittelt wurden, verglichen. Abschließend werden erste Ergebnisse von orientierenden Versuchen zur Adsorption von racemischem Flurbiprofen aus sc‐CO2 an den Hohlkugeln vorgestellt.
Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays
(2013)
Gas adsorption studies (CO2 and N2) over a wide pressure range on vertically, highly aligned dense double-walled carbon nanotube arrays of high purity and high specific surface area are reported. At high pressures, the adsorption capacity of these materials was found to be comparable to those of metal organic frameworks and mesoporous molecular sieves. These highly aligned CNT arrays were chemically modified by treating with oxygen plasma and structurally modified by decreasing the diameter of individual carbon nanotubes. Oxygen plasma treatment led to grafting of a large number of C–O functional groups onto the CNT surface, which further increased the gas adsorption capacity. It was found that gas adsorption is dependent on tube diameter and increases with decrease of the individual CNT diameter in the CNT bundles. As results of our studies we have found that at lower pressure regimes, plasma functionalized carbon nanotubes exhibit better adsorption characteristics whereas at higher pressures, lower diameter carbon nanotube structures exhibited better gas adsorption characteristics.
Two closely related series of paddle-wheel-based triazolyl isophthalate MOFs are presented. Thermal and CO2 adsorption studies reveal network flexibility induced by alkyl substituents of the linker. By choice of the substituent, the pore volumes and pore diameters can be adjusted. Fine-tuning of the gate opening pressure and the hysteresis shape is possible by modulating the substitution pattern and by choice of the metal ion.
Selective separation of CO2-CH4 mixed gases via magnesium aminoethylphosphonate nanoparticles
(2016)
Regarding the importance of adsorptive removal of carbon monoxide from hydrogen-rich mixtures for novel applications (e.g. fuel cells), this work provides a series of experimental data on adsorption isotherms and breakthrough curves of carbon monoxide. Three recently developed 5A zeolites and one commercial activated carbon were used as adsorbents. Isotherms were measured gravimetrically at temperatures of 278–313 K and pressures up to 0.85 MPa. Breakthrough curves of CO were obtained from dynamic column measurements at temperatures of 298–301 K, pressures ranging from 0.1 MPa to ca. 6 MPa and concentrations of CO in H2/CO mixtures of 5–17.5 mol%. A simple mathematical model was developed to simulate breakthrough curves on adsorbent beds using measured and calculated data as inputs. The number of parameters and the use of correlations to evaluate them were restricted in order to focus the importance of measured values. For the given assumptions and simplifications, the results show that the model predictions agree satisfactorily with the experimental data at the different operating conditions applied.
This work provides a series of methane adsorption isotherms and breakthrough curves on one 5A zeolite and one activated carbon. Breakthrough curves of CH4 were obtained from dynamic column measurements at different temperature and pressure conditions for concentrations of 4.4 – 17.3 mol.‐% in H2/CH4 mixtures. A simple model was developed to simulate the curves using measured and calculated data inputs. The results show that the model predictions agree very well with the experiments.
Uptakes of 9.2 mmol g−1 (40.5 wt %) for CO2 at 273 K/0.1 MPa and 15.23 mmol g−1 (3.07 wt %) for H2 at 77 K/0.1 MPa are among the highest reported for metal–organic frameworks (MOFs) and are found for a novel, highly microporous copper‐based MOF (see picture; Cu turquoise, O red, N blue). Thermal analyses show a stability of the flexible framework up to 250 °C.
Metal–organic frameworks (MOFs) as highly porous materials have gained increasing interest because of their distinct adsorption properties.1–3 They exhibit a high potential for applications in gas separation and storage,4 as sensors5 as well as in heterogeneous catalysis.6 In the last few years, the H2 storage capacity of MOFs has been considerably increased. Mesoporous MOFs show high adsorption capacities for CH4, CO2, and H2 at high pressures.2, 3, 7–10 To increase the uptake of H2 and CO2 by physisorption at ambient pressure, adsorbents with small micropores as well as high specific surface areas and micropore volumes are required.11, 12 Such microporous materials seem to be more appropriate for gas‐mixture separation by physisorption than mesoporous materials. For gas separation in MOFs the interactions between the fluid adsorptive and “open metal sites” (coordinatively unsaturated binding sites) or the ligands are regarded as important.13 Industrial processes, such as natural‐gas purification or biogas upgrading, can be improved with those materials during a vapor‐pressure swing adsorption cycle (VPSA cycle) or a temperature swing adsorption cycle (TSA cycle).14 The microporous MOF series CPO‐27‐M (M=Mg, Co, Ni, Zn), for example, shows very high CO2 uptakes at low pressures (<0.1 MPa).15, 16 Concerning H2 adsorption, the microporous MOF PCN‐12 offers with 3.05 wt % the highest uptake at ambient pressure and 77 K reported to date.17
Herein, we present a novel microporous copper‐based MOF equation image[Cu(Me‐4py‐trz‐ia)] (1; Me‐4py‐trz‐ia2−=5‐(3‐methyl‐5‐(pyridin‐4‐yl)‐4H‐1,2,4‐triazol‐4‐yl)isophthalate) with extraordinarily high CO2 and H2 uptakes at ambient pressure, the H2 uptake being similar to that in PCN‐12. The ligand Me‐4py‐trz‐ia2−, which can be obtained from cheap starting materials by a three‐step synthesis in good yield, combines carboxylate, triazole, and pyridine functions and is adopted from a recently presented series of linkers,18 for which up to now only a few coordination polymers are known.
Synthesis and crystal structure of a novel copper-based MOF material are presented. The tetragonal crystal structure of [ ∞ 3 ( Cu 4 ( μ 4 -O ) ( μ 2 -OH ) 2 ( Me 2 trz p ba ) 4 ] possesses a calculated solvent-accessible pore volume of 57%. Besides the preparation of single crystals, synthesis routes to microcrystalline materials are reported. While PXRD measurements ensure the phase purity of the as-synthesized material, TD-PXRD measurements and coupled DTA–TG–MS analysis confirm the stability of the network up to 230 °C. The pore volume of the microcrystalline material determined by nitrogen adsorption at 77 K depends on the synthetic conditions applied. After synthesis in DMF/H2O/MeOH the pores are blocked for nitrogen, whereas they are accessible for nitrogen after synthesis in H2O/EtOH and subsequent MeOH Soxhleth extraction. The corresponding experimental pore volume was determined by nitrogen adsorption to be V Pore = 0.58 cm 3 g - 1 . In order to characterize the new material and to show its adsorption potential, comprehensive adsorption studies with different adsorptives such as nitrogen, argon, carbon dioxide, methanol and methane at different temperatures were carried out. Unusual adsorption–desorption isotherms with one or two hysteresis loops are found – a remarkable feature of the new flexible MOF material.
Crystal structures of two metal–organic frameworks (MFU‐1 and MFU‐2) are presented, both of which contain redox‐active CoII centres coordinated by linear 1,4‐bis[(3,5‐dimethyl)pyrazol‐4‐yl] ligands. In contrast to many MOFs reported previously, these compounds show excellent stability against hydrolytic decomposition. Catalytic turnover is achieved in oxidation reactions by employing tert‐butyl hydroperoxide and the solid catalysts are easily recovered from the reaction mixture. Whereas heterogeneous catalysis is unambiguously demonstrated for MFU‐1, MFU‐2 shows catalytic activity due to slow metal leaching, emphasising the need for a deeper understanding of structure–reactivity relationships in the future design of redox‐active metal–organic frameworks. Mechanistic details for oxidation reactions employing tert‐butyl hydroperoxide are studied by UV/Vis and IR spectroscopy and XRPD measurements. The catalytic process accompanying changes of redox states and structural changes were investigated by means of cobalt K‐edge X‐ray absorption spectroscopy. To probe the putative binding modes of molecular oxygen, the isosteric heats of adsorption of O2 were determined and compared with models from DFT calculations. The stabilities of the frameworks in an oxygen atmosphere as a reactive gas were examined by temperature‐programmed oxidation (TPO). Solution impregnation of MFU‐1 with a co‐catalyst (N‐hydroxyphthalimide) led to NHPI@MFU‐1, which oxidised a range of organic substrates under ambient conditions by employing molecular oxygen from air. The catalytic reaction involved a biomimetic reaction cascade based on free radicals. The concept of an entatic state of the cobalt centres is proposed and its relevance for sustained catalytic activity is briefly discussed.
High pressure adsorption phenomena are discussed for different gases on HKUST-1 (Cu3(BTC)2, commercially available product BasoliteTM C300). Sorption isotherms for hydrogen, nitrogen, methane and carbon dioxide on HKUST-1 were measured in the temperature range of 273–343 K and at pressures up to 50 MPa. The calculated surface excess adsorption capacities for all four adsorptive are one of the highest reported in the literature for HKUST-1 samples. All surface excess data were further calculated from the experimental data by using the helium buoyancy correction. A detailed description was given.
Also a procedure to calculate the absolute amount adsorbed from the surface excess amount by using two different models is shown. Using one model, the density and the volume of the adsorbed phase can be calculated. The density of the adsorbed phase ρads corresponds to the liquid density of the adsorptive at its boiling point ρliq,BP. In case of hydrogen no excess maximum was found up to 50 MPa, so that one model could not be applied. Finally, the isosteric heat of adsorption for each gas was calculated by using the Clausius–Clapeyron equation.
In this work the adsorption of CO2 and CH4 on a series of isoreticular microporous metal–organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates, IFP-1–IFP-6 (IFP = Imidazolate Framework Potsdam), is studied firstly by pure gas adsorption at 273 K. All experimental isotherms can be nicely described by using the Tòth isotherm model and show the preferred adsorption of CO2 over CH4. At low pressures the Tòth isotherm equation exhibits a Henry region, wherefore Henry's law constants for CO2 and CH4 uptake could be determined and ideal selectivity αCO2/CH4 has been calculated. Secondly, selectivities were calculated from mixture data by using nearly equimolar binary mixtures of both gases by a volumetric–chromatographic method to examine the IFPs. Results showed the reliability of the selectivity calculation. Values of αCO2/CH4 around 7.5 for IFP-5 indicate that this material shows much better selectivities than IFP-1, IFP-2, IFP-3, IFP-4 and IFP-6 with slightly lower selectivity αCO2/CH4 = 4–6. The preferred adsorption of CO2 over CH4 especially of IFP-5 and IFP-4 makes these materials suitable for gas separation application.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.