Refine
Document Type
Conference Type
- Konferenzartikel (5)
Is part of the Bibliography
- yes (7)
Keywords
- Computerunterstützte Kommunikation (1)
- Eingebettetes System (1)
- Energieversorgung (1)
- Messtechnik (1)
- Messung (1)
- TinyOS (1)
- Wasser (1)
- Wireless M-Bus (1)
- model driven design (1)
- smart metering (1)
Institute
Open Access
- Closed (3)
- Closed Access (3)
- Bronze (1)
- Open Access (1)
Efficient, low-cost, secure and reliable communication solutions are a major stepping stone for smart metering and smart grid applications. This especially holds true for the so called primary communication or local metrological network (LMN) between a local meter or actuator and a data collector or gateway, where the highest requirements with regard to cost, bandwidth, and energy efficiency have to be taken into consideration. Multiple developments and field tests are going on in this field, however, energy autarkic devices are hardly found, yet. This contribution describes the development of an automatic water meter reading (AWMR) technology based on Wireless M-Bus to provide water utility companies with an automatic remote water meter reading solution. It addresses the special needs of home utilities by providing a remote metering solution independent from the electricity infrastructure, both in terms of data communication and in terms of power supply. For this project, a cost efficient integrated energy harvesting system powered by the available water flow was developed, to enable operation independently of the mains grid, and eliminate the need for battery replacement for near-zero maintenance costs.
Efficient, low-cost, secure and reliable communication solutions are a major stepping stone for smart metering and smart grid applications. This especially holds true for the so called primary communication or local metrological network (LMN) between a local meter or actuator and a data collector or gateway, where the highest requirements with regard to cost, bandwidth, and energy efficiency have to be taken into consideration. Multiple developments and field tests are going on in this field, however, energy autarkic devices are hardly found, yet.
In the field of smart metering it can be observed that standardized protocol, like Wireless M-Bus or ZigBee, enjoy a rapidly increasing popularity. For the protocol implementations, however, up to now, mostly legacy engineering processes and technologies are used, and modern approaches such as model driven design processes or open software platform are disregarded. Therefore, within the WiMBex project, it shall be demonstrated that it is possible to develop a commercial class Wireless M-Bus implementation following state-of-the art design process and using TinyOS as an open source platform. This contribution describes the overall approach of the project, as well as the state and the first experiences of the current work in progress.
Efficient, secure and reliable communication is a major precondition for powerful applications in smart metering and smart grid. This especially holds true for the so called primary communication in the Local Metrological Network (LMN) between meter and data collector, as the LMN comes with the most stringent requirements with regard to cost, range, as well as bandwidth and energy efficiency. Until today, LMN field tests are operated all over the world. In these installations, however, energy autarkic systems play a marginal role. This contribution describes the results of the framework 7 (FP 7) WiMBex project (“Remote wireless water meter reading solution based on the EN 13757 standard, providing high autonomy, interoperability and range”). In this project an energy autarkic water meter was developed and tested, which follows the specification of the Wireless M-Bus protocol (EN 13757). The complete system development covers the PCB with the RF transceiver and the microcontroller, the energy converter and storage, and the software with the protocol. This contribution especially concentrates on the design, the development and the verification of the routing protocol. The routing protocol is based on the Q mode of EN13757-5 (Wireless M-Bus) and was extended by an additional energy state related parameter. This extension is orthogonal to the existing protocol and considers both the charge level and the charge characteristics (rate of occurrences, intensity). The software was implemented in NesC under the operating system TinyOS. The system was verified in an automated test bed and in field tests in UK and Ireland.
Due to its numerous application fields and benefits, virtualization has become an interesting and attractive topic in computer and mobile systems, as it promises advantages for security and cost efficiency. However, it may bring additional performance overhead. Recently, CPU virtualization has become more popular for embedded platforms, where the performance overhead is especially critical. In this article, we present the measurements of the performance overhead of the two hypervisors Xen and Jailhouse on ARM processors in the context of the heavy load “Cpuburn-a8” application and compare it to a native Linux system running on ARM processors.
Angesichts aktueller Entwicklungen und Trends im Bereich Embedded, Cloud- und Mobile Computing für das Internet of Things (IoT), der allgegenwärtigen Systemvernetzung mit dem Internet und der damit einhergehenden Steigerung der Anforderungen nach immer mehr parallel auszuführenden Aufgaben, bekommt das Thema Systemvirtualisierung eine immer größere Bedeutung. In diesem Artikel wird ein aktuelles Projekt vorgestellt, das eine Realisierung von virtualisierten Systemen unter Nutzung eingebetteter Systeme ermöglicht.