Refine
Document Type
- Article (reviewed) (3)
- Conference Proceeding (2)
- Doctoral Thesis (1)
Conference Type
- Konferenzartikel (2)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Keywords
- predictive maintenance (3)
- Bearings (2)
- Predictive maintenance (2)
- Bearing fault classification (1)
- Failure analysis (1)
- Fault Classification (1)
- Fault classification (1)
- Grinding machines (1)
- Intermediate domain (1)
- Kugellager (1)
Institute
Open Access
- Open Access (3)
- Closed Access (2)
- Gold (2)
- Bronze (1)
- Closed (1)
In recent years, predictive maintenance tasks, especially for bearings, have become increasingly important. Solutions for these use cases concentrate on the classification of faults and the estimation of the Remaining Useful Life (RUL). As of today, these solutions suffer from a lack of training samples. In addition, these solutions often require high-frequency accelerometers, incurring significant costs. To overcome these challenges, this research proposes a combined classification and RUL estimation solution based on a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. This solution relies on a hybrid feature extraction approach, making it especially appropriate for low-cost accelerometers with low sampling frequencies. In addition, it uses transfer learning to be suitable for applications with only a few training samples.
Deep learning approaches are becoming increasingly important for the estimation of the Remaining Useful Life (RUL) of mechanical elements such as bearings. This paper proposes and evaluates a novel transfer learning-based approach for RUL estimations of different bearing types with small datasets and low sampling rates. The approach is based on an intermediate domain that abstracts features of the bearings based on their fault frequencies. The features are processed by convolutional layers. Finally, the RUL estimation is performed using a Long Short-Term Memory (LSTM) network. The transfer learning relies on a fixed-feature extraction. This novel deep learning approach successfully uses data of a low-frequency range, which is a precondition to use low-cost sensors. It is validated against the IEEE PHM 2012 Data Challenge, where it outperforms the winning approach. The results show its suitability for low-frequency sensor data and for efficient and effective transfer learning between different bearing types.
In the last decade, deep learning models for condition monitoring of mechanical systems increasingly gained importance. Most of the previous works use data of the same domain (e.g., bearing type) or of a large amount of (labeled) samples. This approach is not valid for many real-world scenarios from industrial use-cases where only a small amount of data, often unlabeled, is available.
In this paper, we propose, evaluate, and compare a novel technique based on an intermediate domain, which creates a new representation of the features in the data and abstracts the defects of rotating elements such as bearings. The results based on an intermediate domain related to characteristic frequencies show an improved accuracy of up to 32 % on small labeled datasets compared to the current state-of-the-art in the time-frequency domain.
Furthermore, a Convolutional Neural Network (CNN) architecture is proposed for transfer learning. We also propose and evaluate a new approach for transfer learning, which we call Layered Maximum Mean Discrepancy (LMMD). This approach is based on the Maximum Mean Discrepancy (MMD) but extends it by considering the special characteristics of the proposed intermediate domain. The presented approach outperforms the traditional combination of Hilbert–Huang Transform (HHT) and S-Transform with MMD on all datasets for unsupervised as well as for semi-supervised learning. In most of our test cases, it also outperforms other state-of-the-art techniques.
This approach is capable of using different types of bearings in the source and target domain under a wide variation of the rotation speed.
It is important to minimize the unscheduled downtime of machines caused by outages of machine components in highly automated production lines. Considering machine tools such as, grinding machines, the bearing inside of spindles is one of the most critical components. In the last decade, research has increasingly focused on fault detection of bearings. In addition, the rise of machine learning concepts has also intensified interest in this area. However, up to date, there is no single one-fits-all solution for predictive maintenance of bearings. Most research so far has only looked at individual bearing types at a time.
This paper gives an overview of the most important approaches for bearing-fault analysis in grinding machines. There are two main parts of the analysis presented in this paper. The first part presents the classification of bearing faults, which includes the detection of unhealthy conditions, the position of the error (e.g. at the inner or at the outer ring of the bearing) and the severity, which detects the size of the fault. The second part presents the prediction of remaining useful life, which is important for estimating the productive use of a component before a potential failure, optimizing the replacement costs and minimizing downtime.
The often-occurring short-term orders of manufactured products require a high machine availability. This requirement increases the importance of predictive maintenance solutions for bearings used in machines. There are, among others, hybrid solutions that rely on a physical model. For their usage, knowing the different degradation stages of bearings is essential. This research analyzes the underlying failure mechanisms of these stages theoretically and in a practical example of the well-known FEMTO dataset used for the IEEE PHM 2012 Data Challenge to provide this knowledge. In addition, it shows for which use cases the usage of low-frequency accelerometers is sufficient. The analysis provides that the degradation stages toward the end of the bearing life can also be detected with low-frequency accelerometers. Further, the importance of high-frequency accelerometers to detect bearing faults in early degradation stages is pointed out. These aspects have not been paid attention to by industry and research until now, despite providing a considerable cost-saving potential.
The last decades have seen the evolution of industrial production into more sophisticated processes. The development of specialized, high-end machines has increased the importance of predictive maintenance of mechanical systems to produce high-quality goods and avoid machine breakdowns. Predictive maintenance has two main objectives: to classify the current status of a machine component and to predict the maintenance interval by estimating its remaining useful life (RUL). Nowadays, both objectives are covered by machine learning and deep learning approaches and require large training datasets that are often not available. One possible solution may be transfer learning, where the knowledge of a larger dataset is transferred to a smaller one. This thesis is primarily concerned with transfer learning for predictive maintenance for fault classification and RUL estimation. The first part presents the state-of-the-art machine learning techniques with a focus on techniques applicable to predictive maintenance tasks (Chapter 2). This is followed by a presentation of the machine tool background and current research that applies the previously explained machine learning techniques to predictive maintenance tasks (Chapter 3). One novelty of this thesis is that it introduces a new intermediate domain that represents data by focusing on the relevant information to allow the data to be used on different domains without losing relevant information (Chapter 4). The proposed solution is optimized for rotating elements. Therefore, the presented intermediate domain creates different layers by focusing on the fault frequencies of the rotating elements. Another novelty of this thesis is its semi and unsupervised transfer learning-based fault classification approach for different component types under different process conditions (Chapter 5). It is based on the intermediate domain utilized by a convolutional neural network (CNN). In addition, a novel unsupervised transfer learning loss function is presented based on the maximum mean discrepancy (MMD), one of the state-of-the-art algorithms. It extends the MMD by considering the intermediate domain layers; therefore, it is called layered maximum mean discrepancy (LMMD). Another novelty is an RUL estimation transfer learning approach for different component types based on the data of accelerometers with low sampling rates (Chapter 6). It applies the feature extraction concepts of the classification approach: the presented intermediate domain and the convolutional layers. The features are then used as input for a long short-term memory (LSTM) network. The transfer learning is based on fixed feature extraction, where the trained convolutional layers are taken over. Only the LSTM network has to be trained again. The intermediate domain supports this transfer learning type, as it should be similar for different component types. In addition, it enables the practical usage of accelerometers with low sampling rates during transfer learning, which is an absolute novelty. All presented novelties are validated in detailed case studies using the example of bearings (Chapter 7). In doing so, their superiority over state-of-the-art approaches is demonstrated.