Refine
Document Type
- Article (reviewed) (11)
- Patent (2)
- Conference Proceeding (1)
- Contribution to a Periodical (1)
- Letter to Editor (1)
- Moving Images (1)
- Article (unreviewed) (1)
Is part of the Bibliography
- yes (18)
Keywords
- Augmented Reality (3)
- amputee (3)
- neuroprosthetics (3)
- 3D-CAD (2)
- Götz von Berlichingen (2)
- Handprothese (2)
- Prothetik (2)
- anthropomorphic hand replacement (2)
- prosthesis (2)
- visual control (2)
Institute
promoted by (select)
Open Access
- Open Access (11)
- Closed Access (4)
- Closed (1)
- Gold (1)
Optische Navigationssysteme weisen bisher eine eindeutige Trennung zwischen nachverfolgendem Gerät (Tool Tracker) und nachverfolgten Geräten (Tracked Tools) auf. In dieser Arbeit wird ein neues Konzept vorgestellt, dass diese Trennung aufhebt: Jedes Tracked Tool ist gleichzeitig auch Tool Tracker und besteht aus Marker-LEDs sowie mindestens einer Kamera, mit deren Hilfe andere Tracker in Lage und Orientierung nachverfolgt werden können. Bei Verwendung von nur einer Kamera geschieht dies mittels Pose Estimation, ab zwei Kameras werden die Marker-LEDs trianguliert. Diese Arbeit beinhaltet die Vorstellung des neuen Peer-To-Peer-Tracking-Konzepts, einen sehr schnellen Pose-Estimation-Algorithmus für beliebig viele Marker sowie die Klärung der Frage, ob die mit Pose Estimation erreichbare Genauigkeit vergleichbar mit der eines Stereo-Kamera-Systems ist und den Anforderungen an die chirurgische Navigation gerecht wird.
Purpose
This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also included is a new and fast algorithm for pose estimation.
Methods
A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D (the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results
Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than 18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion
The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers more freedom in the operating room while providing accurate, fast, and robust results.
Neuroprosthetics 2.0
(2019)
Background: This paper presents a novel approach for a hand prosthesis consisting of a flexible, anthropomorphic, 3D-printed replacement hand combined with a commercially available motorized orthosis that allows gripping.
Methods: A 3D light scanner was used to produce a personalized replacement hand. The wrist of the replacement hand was printed of rigid material; the rest of the hand was printed of flexible material. A standard arm liner was used to enable the user’s arm stump to be connected to the replacement hand. With computer-aided design, two different concepts were developed for the scanned hand model: In the first concept, the replacement hand was attached to the arm liner with a screw. The second concept involved attaching with a commercially available fastening system; furthermore, a skeleton was designed that was located within the flexible part of the replacement hand.
Results: 3D-multi-material printing of the two different hands was unproblematic and inexpensive. The printed hands had approximately the weight of the real hand. When testing the replacement hands with the orthosis it was possible to prove a convincing everyday functionality. For example, it was possible to grip and lift a 1-L water bottle. In addition, a pen could be held, making writing possible.
Conclusions: This first proof-of-concept study encourages further testing with users.
A new concept for robust non-invasive optical activation of motorized hand prostheses by simple and non-contactcommands is presented. In addition, a novel approach for aiding hand amputees is shown, outlining significantprogress in thinking worth testing. In this, personalized 3D-printed artificial flexible hands are combined withcommercially available motorized exoskeletons, as they are used e.g. in tetraplegics.