Refine
Document Type
- Conference Proceeding (7)
- Part of a Book (5)
- Contribution to a Periodical (3)
- Article (reviewed) (2)
- Article (unreviewed) (2)
- Other (1)
- Report (1)
Conference Type
- Konferenzartikel (7)
Is part of the Bibliography
- yes (21)
Keywords
- Datenqualität (12)
- Kundendaten (12)
- Datenmanagement (10)
- Künstliche Intelligenz (8)
- Maschinelles Lernen (6)
- Benutzererlebnis (3)
- Data Governance (3)
- Electronic Commerce (3)
- Electronic Shopping (3)
- Identity Resolution (3)
Institute
Open Access
- Open Access (12)
- Closed (5)
- Closed Access (4)
- Diamond (2)
- Hybrid (2)
- Bronze (1)
Funding number
- WM31-43-99/111 (3)
- BW1_3027 (1)
Human-machine interaction can be supported by the detection of humans through the simultaneous localization and distinction from non-human objects. This paper compares modern object detection algorithms (Damo-YOLO, YOLOv6, YOLOv7 and YOLOv8) in combination with Transfer Learning and Super Resolution in different scenarios to achieve human detection on low resolution infrared images. The data set created for this purpose includes images of an empty room, images of warm coffee cups, and images of people in various scenarios and at distances ranging from two to six meters. The Average Precision AP@50 and AP@50:95 values achieved across all scenarios reach up to 98.02 % and 66.99 % respectively.
Künstliche Intelligenz gilt immer noch als eine der zukunftsweisenden Technologien, die viele Bereiche wie etwa Medizin, Handel, Verkehr und öffentliche Verwaltung revolutioniert. So scheint es nicht verwunderlich, dass bereits knapp jedes fünfte Unternehmen in Deutschland zurzeit KI-Systeme implementiert oder zumindest ihren Einsatz plant. Besonders hoch im Kurs stehen KI-Projekte, um Daten zu analysieren. Ganze 70 Prozent der Unternehmen sehen hier das größte Potenzial, so die Ergebnisse einer Umfrage von PWC [1]. Dennoch lauern einige Stolpersteine, wollen Unternehmen intelligente Datenprojekte umsetzen. Welche Hürden auftauchen können und wie sich diese meistern lassen, erläutert dieser Artikel anhand eines KI-Projektes zur Analyse von Geschäftspartnerdaten [2].
Datenanalyse mithilfe von Künstlicher Intelligenz (KI) – für 70 Prozent der von den Beratern von PWC befragten Unternehmen ist dies das vielversprechendste Einsatzszenario. Doch so attraktiv die Vision erscheint, mittels KI das eigene Geschäft oder gar eine ganze Branche zu revolutionieren, so handfest sind die Herausforderungen, die sich in der Praxis ergeben. Ein häufiges Problem ist ein bereits beim Start eines Projekts mangelhafter Datenbestand. Die KI mit qualitativ schlechten Daten zu trainieren, macht keinen Sinn, da sie falsche Informationen lernt. Ohne den Einsatz gewisser Automatisierungen und KI ist es wiederum mühsam, die unzureichende Datenbasis zu verbessern.
Die Mehrheit der deutschen Unternehmen verspricht sich aus KI-gestützter Datenanalyse einen großen Geschäftsvorteil. Doch gerade das Thema Datenbestand ist eine der größten, immer noch häufig unterschätzten Hürde beim Trainieren und Einführen von KI-Algorithmen. Im Folgenden sind vier konkrete Erfahrungen und Tipps für KI- & Datenanalyseprojekte in Unternehmen aufgeführt.
Onlineshops in Deutschland verschenken sehr viel Potenzial im Registrierungs- und Bestellprozess. Dabei lässt sich mit wenigen gezielten Verbesserungen der Checkout barrierefrei und smart gestalten. Zu diesem Ergebnis kommt eine heuristische Untersuchung der Top 100 Onlineshops von Uniserv gemeinsam mit der Hochschule Offenburg. Die Eingabe und Qualität von Adressdaten spielen dabei eine besondere Rolle.
Eine Frage der Qualität
(2021)
Robotic Process Automation (RPA) is a technology for automating business processes and connecting systems by means of software robots in organizations that is gaining traction and growing out of its infancy. Thus, it is no longer just a question of what is technologically feasible, but rather how this technology can be used most profitably. However, business models for RPA remain underinvestigated in literature. Existing work is highly heterogenous, lacking structure and applicability in practice. To close this gap, we present an approach to sustainably establish RPA as a driver of digitization and automation within a company based on an iterative, holistic view of business models with the Business Model Canvas as analysis tool.
Kundendaten im E-Commerce – Optimierungspotenzial im Checkout-Prozess des deutschen Online-Handels
(2023)
Die Gestaltung eines benutzungsfreundlichen Checkout-Prozesses ist für den Erfolg des E-Commerce von großer Bedeutung. Die Abfrage der Kundendaten bildet einen wichtigen Teil der Customer Journey. Auf der einen Seite wollen die Handelsunternehmen so viel wie möglich über ihre Kundschaft erfahren, um möglichst zielgenaue Angebote und Marketingmaßnahmen ausspielen und das perfekte Einkaufserlebnis generieren zu können. Auf der anderen Seite möchten sich die Kundinnen und Kunden beim Online-Shopping auf den Kauf konzentrieren und erwarten einen reibungslosen Ablauf. Der Checkout-Prozess ist in diesem Zusammenhang ein kritischer Punkt. Dies spiegelt sich auch in den hohen Warenkorbabbruchraten wider. Um Online-Shoppende nachhaltig zu begeistern, gibt es noch viel Raum für Verbesserungen. Mit dem Ziel, den Status quo im deutschen Online-Handel besser zu verstehen und Usability und User Experience für eine höhere Konvertierungsrate zu optimieren, untersuchte die hier vorgestellte Forschungsarbeit den Anmelde- und Checkout-Prozess der 100 umsatzstärksten Online-Shops in Deutschland. Es werden die Ergebnisse der Studie präsentiert und aufgezeigt, an welchen Stellen Optimierungspotenzial besteht – bspw. bei zu komplizierten Formularen, unnötigen Datenabfragen oder erzwungenen Registrierungen – sowie Vorschläge für die Praxis des Online-Handels diskutiert.
Die Covid-19-Pandemie hat die Welt verändert. Alle Wirtschaftszweige wie etwa der Handel sahen sich von heute auf morgen mit einer veränderten Realität konfrontiert. Diese Entwicklung hat einerseits den schon vor der Pandemie wahrnehmbaren Digitalisierungsdruck, vor allem auf den stationären Handel, massiv erhöht. Und andererseits die Daten von Kundinnen und Kunden in das Zentrum der Aufmerksamkeit gerückt, da in der digitalen Welt der persönliche Kontakt zur Kundschaft fehlt. Dieser Beitrag beleuchtet die Bedeutung von Kundendaten, Datenqualität und Datenmanagement als wesentliche Erfolgsfaktoren für den Handel in dieser herausfordernden Situation. Er zeigt auf, wie Datenverantwortliche im Handel aus dem Wissen um die Daten mittels Identity Resolution klare Profile von Kundinnen und Kunden entwickeln und diese plattformbasiert ausrollen können. Hierzu wird das neue Konzept des Customer Digital Twins eingeführt. Die abschließenden Handlungsempfehlungen bieten eine ‚Arbeitsanweisung in fünf Schritten‘ für eine aktuelle, vollständige und verlässliche Datenbasis, als Grundlage für den datenorientierten stationären und Onlinehandel.