Refine
Document Type
Conference Type
- Konferenzartikel (1)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Keywords
- Electrolyte-gated transistors (1)
- Feldeffekt (1)
- Halbleiter (1)
- Transistor (1)
- Transistortechnologie (1)
- oxide semiconductors (1)
- printed electronics (1)
- transistor model (1)
Institute
Open Access
- Closed Access (4)
- Bronze (1)
- Open Access (1)
Electrolyte-gated thin-film transistors (EGTs) with indium oxide channel, and expected lifetime of three months, enable low-voltage operation (~1 V) in the field of printed electronics (PEs). The channel width of our printed EGTs is varied between 200 and 1000 μm, whereas a channel length between 10 and 100 μm is used. Due to the lack of uniform performance p-type metal oxide semiconductors, n-type EGTs and passive elements are used to design circuits. For logic gates, transistor-resistor logic has been employed so far, but depletion and enhancement-mode EGTs in a transistor-transistor logic boost the circuit performance in terms of delay and signal swing. In this article, the threshold voltage of the EGT, which determines the operation mode, is tuned through sizing of the EGTs channel geometry. The feasibility of both transistor operation modes is demonstrated for logic gates and ring oscillators. An inverter operating at a supply voltage of 1 V shows a maximum gain of 9.6 and a propagation delay time of 0.7 ms, which represents an improvement of ~ 2x for the gain and oscillation frequency, in comparison with the resistor-transistor logic design. Moreover, the power consumption is reduced by 6x.
In the domain of printed electronics (PE), field-effect transistors (FETs) with an oxide semiconductor channel are very promising. In particular, the use of high gate-capacitance of the composite solid polymer electrolytes (CSPEs) as a gate-insulator ensures extremely low voltage requirements. Besides high gate capacitance, such CSPEs are proven to be easily printable, stable in air over wide temperature ranges, and possess high ion conductivity. These CSPEs can be sensitive to moisture, especially for high surface-to-volume ratio printed thin films. In this paper, we provide a comprehensive experimental study on the effect of humidity on CSPE-gated single transistors. At the circuit level, the performance of ring oscillators (ROs) has been compared for various humidity conditions. The experimental results of the electrolyte-gated FETs (EGFETs) demonstrate rather comparable currents between 30%-90% humidity levels. However, the shifted transistor parameters lead to a significant performance change of the RO frequency behavior. The study in this paper shows the need of an impermeable encapsulation for the CSPE-gated FETs to ensure identical performance at all humidity conditions.
Electrolyte-Gated Field-Effect Transistors Based on Oxide Semiconductors: Fabrication and Modeling
(2017)
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
High mobility, electrolyte-gated transistors (EGTs) show high DC performance at low voltages (< 2 V). To model those EGTs, we have used different models for the below and the above threshold regime with appropriate interpolation to ensure continuity and smoothness over all regimes. This empirical model matches very well with our measured results obtained by the electrical characterization of EGTs.