Refine
Document Type
- Conference Proceeding (7)
- Patent (6)
- Article (reviewed) (3)
Conference Type
- Konferenzartikel (7)
Language
- English (10)
- German (5)
- Other language (1)
Keywords
- Current measurement (2)
- Switches (2)
- AC machines (1)
- Boundary conditions (1)
- Compensation (1)
- Current Control (1)
- DC-AC converters (1)
- Device characterization (1)
- Diagnostics (1)
- Distributed Co-Simulation Protocol (1)
Institute
Open Access
- Open Access (7)
- Bronze (6)
- Closed (6)
- Closed Access (3)
- Gold (1)
The following describes a new method for estimating the parameters of an interior permanent magnet synchronous machine (IPMSM). For the estimation of the parameters the current slopes caused by the switching of the inverter are used to determine the unknowns of the system equations of the electrical machine. The angle and current dependence of the machine parameters are linearized within a PWM cycle. By considering the different switching states of the inverter, several system equations can be derived and a solution can be found within one PWM cycle. The use of test signals and filter-based approaches is avoided. The derived algorithm is explained and validated with measurements on a test bench.
The nonlinear behavior of inverters is mainly influenced by the interlocking and switching times of the semiconductors. In the following work, a method is presented that enables the possibility of an online identification of the switching times of the semiconductors. This information allows a compensation of the non-linear behavior, a reduction of the locking time and can be used for diagnostic purposes. First, a theoretical derivation of the method is made by considering different cases when switching of the inverter and deriving identification possibilities. The method is then extended so that the entire module is taken into account. Furthermore, a possible theoretical implementation is shown. After the methodology has been investigated with possible limitations, boundary conditions and with respect to real hardware, an implementation in the FPGA is performed. Finally, the results are presented, discussed
and further improvements are presented in an outlook.
In this work a method for the estimation of current slopes induced by inverters operating interior permanent magnet synchronous machines is presented. After the derivation of the estimation algorithm, the requirements for a suitable sensor setup in terms of accuracy, dynamic and electromagnetic interference are discussed. The boundary conditions for the estimation algorithm are presented with respect to application within high power traction systems. The estimation algorithm is implemented on a field programmable gateway array. This moving least-square algorithm offers the advantage that it is not dependent on vectors and therefore not every measured value has to be stored. The summation of all measured values leads to a significant reduction of the required storage units and thus decreases the hardware requirements. The algorithm is designed to be calculated within the dead time of the inverter. Appropriate countermeasures for disturbances and hardware restrictions are implemented. The results are discussed afterwards.
The present work describes an extension of current slope estimation for parameter estimation of permanent magnet synchronous machines operated at inverters. The area of operation for current slope estimation in the individual switching states of the inverter is limited due to measurement noise, bandwidth limitation of the current sensors and the commutation processes of the inverter's switching operations. Therefore, a minimum duration of each switching state is necessary, limiting the final area of operation of a robust current slope estimation. This paper presents an extension of existing current slope estimation algorithms resulting in a greater area of operation and a more robust estimation result.
The nonlinear behavior of inverters is largely impacted by the interlocking and switching times. A method for online identifying the switching times of semiconductors in inverters is presented in the following work. By being able to identify these times, it is possible to compensate for the nonlinear behavior, reduce interlocking time, and use the information for diagnostic purposes. The method is first theoretically derived by examining different inverter switching cases and determining potential identification possibilities. It is then modified to consider the entire module for more robust identification. The methodology, including limitations and boundary conditions, is investigated and a comparison of two methods of measurement acquisition is provided. Subsequently the developed hardware is described and the implementation in an FPGA is carried out. Finally, the results are presented, discussed, and potential challenges are encountered.
Current Harmonics Control Algorithm for inverter-fed Nonlinear Synchronous Electrical Machines
(2023)
Current harmonics are a well known challenge of electrical machines. They can be undesirable as they can cause instabilities in the control, generate additional losses and lead to torque ripples with noise. However, they can also be specifically generated in new methods in order to improve the machine behavior. In this paper, an algorithm for controlling current harmonics is proposed. It can be described as a combination of different PI controllers for defined angles of the machine with repetitive control characteristics for whole revolutions. The controller design is explained and important points where linearization is necessary are shown. Furthermore, the limits are analyzed and, for validation, measurement results with a permanently excited synchronous machine on the test bench are considered.
The increasingly stringent CO2 emissions standards require innovative solutions in the vehicle development process. One possibility to reduce CO2 emissions is the electrification of powertrains. The resulting increased complexity, as well as the increased competition and time pressure make the use of simulation software and test benches indispensable in the early development phases. This publication therefore presents a methodology for test bench coupling to enable early testing of electrified powertrains. For this purpose, an internal combustion engine test bench and an electric motor test bench are virtually interconnected. By applying and extending the Distributed Co-Simulation Protocol Standard for the presented hybrid electric powertrain use case, real-time-capable communication between the two test benches is achieved. Insights into the test bench setups, and the communication between the test benches and the protocol extension, especially with regard to temperature measurements, enable the extension to be applied to other powertrain or test bench configurations. The shown results from coupled test bench operations emphasize the applicability. The discussed experiences from the test bench coupling experiments complete the insights.
To increase the continuous power density of electrical machines, cooling channels that pass through the stator slot next to the conductors are a promising concept. This concept is applied to a hairpin-wound motor and engineered out for industrial-scale implementation using a resource-efficient design approach. The stator's design requires no additional components in comparison to a conventional motor, as the cooling channels are integrated directly into the potting material. This research paper centers on conducting a simulation analysis of this concept while also making a comparison with a conventional cooling approach. In this paper, design, thermal and electromagnetic aspects of the concept are considered.