Refine
Year of publication
Document Type
- Conference Proceeding (38)
- Article (reviewed) (10)
- Book (6)
- Contribution to a Periodical (4)
- Patent (4)
- Article (unreviewed) (3)
- Part of a Book (2)
- Other (1)
Language
- English (44)
- German (23)
- Other language (1)
Keywords
- Ausbildung (6)
- Produktion (6)
- Design (4)
- CAD (3)
- Digitalisierung (3)
- Druck (3)
- Additive Manufacturing (2)
- CAAD (2)
- Dimension 3 (2)
- Götz von Berlichingen (2)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (60)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (5)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (5)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (4)
- Fakultät Medien und Informationswesen (M+I) (1)
- Zentrale Einrichtungen (1)
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
Abstract: 3D print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein
(2019)
The visualization of heart rhythm disturbance and atrial fibrillation therapy allow the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3D printer. The aim of the study was to produce a 3D print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation.
The basis of 3D printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front AdvanceTM from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3D printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used: 1. a binder jetting printer with polymer gypsum and 2. a multi-material printer with photopolymer. A final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing.
With the help of the thermal simulation results and the subsequent evaluation, it was possible to make a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It could be measured that already 3 mm from the balloon surface into the myocardium the temperature drops to 25 °C. The simulation model was printed using two 3D printing methods. Both methods as well as the different printing materials offer different advantages and disadvantages. While the first model made of polymer gypsum can be produced quickly and cheaply, the second model made of photopolymer takes five times longer and was twice as expensive. On the other hand, the second model offers significantly better properties and was more durable overall. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model.
Three-dimensional heart rhythm models as well as virtual simulations allow a very good visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
Additive manufacturing (AM) or 3D printing (3DP) has become a widespread new technology in recent years and is now used in many areas of industry. At the same time, there is an increasing need for training courses that impart the knowledge required for product development in 3D printing. In this article, a workshop on “Rapid Prototyping” is presented, which is intended to provide students with the technical and creative knowledge for product development in the field of AM. Today, additive manufacturing is an important part of teaching for the training of future engineers. In a detailed literature review, the advantages and disadvantages of previous approaches to training students are examined and analyzed. On this basis, a new approach is developed in which the students analyze and optimize a given product in terms of additivie manufacturing. The students use two different 3D printers to complete this task. In this way, the students acquire the skills to work independently with different processes and materials. With this new approach, the students learn to adapt the design to different manufacturing processes and to observe the restrictions of different materials. The results of these courses are evaluated through feedback in a presentation and a questionnaire.
Fusion 360 – kurz und bündig
(2020)
Dieses Lehrbuch ermöglicht dem Anfänger in der 3D-Modellierung einen schnellen Einstieg in die Arbeit mit dem cloudbasierten CAD-System Autodesk® Fusion 360TM. Der Schwerpunkt liegt dabei auf den grundlegenden Funktionen zur Modellierung von Einzelteilen und dem Zusammenbau von Produkten, sowie in der Erstellung von einfachen technischen Zeichnungen. Dabei werden bei jedem Schritt die besonderen Anforderungen an eine 3D-Druck-gerechte Gestaltung erläutert und umgesetzt. Somit ist das Ergebnis dieser „Schritt für Schritt“-Anleitung die vollständige Modellierung eines Miniatur-Automobils, das am 3D-Drucker in ein reales Modell umgesetzt werden kann. Das didaktische Konzept ist so ausgelegt, dass alle Schritte für ein Selbststudium geeignet sind. Die vorliegende Auflage wurde komplett überarbeitet, sie basiert auf der neuen Benutzeroberfläche User Interface (UI) und enthält ein neues Kapitel zum CNC-Blechbiegen.
Dieses Lehr- und Übungsbuch ermöglicht dem Anfänger in der 3D-Modellierung einen schnellen Einstieg in die Arbeit mit dem neuen CAD-System Onshape. Als cloudbasierte Freeware bietet Onshape einen kostenlosen und einfachen Zugang zu CAD über das Internet. In diesem Buch wird als praktisches Übungsbeispiel ein Miniaturauto mit Ballonantrieb modelliert. Dabei werden die besonderen Anforderungen an eine 3D-Druck-gerechte Gestaltung erläutert und umgesetzt. Schwerpunkte bilden die grundlegenden Funktionen zur Modellierung von Einzelteilen und Baugruppen sowie die Erstellung von einfachen technischen Zeichnungen. Somit ist das Ergebnis dieser „Schritt für Schritt“-Anleitung die vollständige Modellierung eines Miniaturautos, das am 3D-Drucker in ein reales Modell umgesetzt und einfach zusammengebaut werden kann. Das didaktische Konzept ist so ausgelegt, dass alle Schritte für ein Selbststudium geeignet sind.
Dieses Lehrbuch ermöglicht dem Anfänger in der 3D-Modellierung einen schnellen Einstieg in die Arbeit mit dem cloudbasierten praxisorientierten CAD-System Onshape. Dabei werden bei jedem Schritt die besonderen Anforderungen an eine 3D-Druck-gerechte Gestaltung erläutert und umgesetzt. Somit ist das Ergebnis dieser „Schritt für Schritt“-Anleitung die vollständige Modellierung eines Miniatur-Automobils, das am 3D-Drucker in ein reales Modell umgesetzt werden kann. Die aktuelle Auflage wurde zugunsten besserer Lesbarkeit in ein größeres Format gebracht, die Inhalte wurden neu gegliedert und aktualisiert und um das Kapitel „Blechbauteile für CNC-Biegen" erweitert.