Refine
Year of publication
Document Type
- Conference Proceeding (44)
- Article (reviewed) (9)
- Book (6)
- Contribution to a Periodical (4)
- Patent (4)
- Article (unreviewed) (3)
- Part of a Book (2)
- Other (1)
Language
- English (47)
- German (25)
- Other language (1)
Is part of the Bibliography
- yes (73)
Keywords
- Ausbildung (6)
- Produktion (6)
- Design (4)
- Additive Manufacturing (3)
- CAD (3)
- Digitalisierung (3)
- Druck (3)
- CAAD (2)
- Dimension 3 (2)
- Götz von Berlichingen (2)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (65)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (6)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (5)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (4)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (1)
- Zentrale Einrichtungen (1)
The development of new processes and materials for additive manufacturing is currently progressing rapidly. In order to use the advantages of additive manufacturing, however, product development and design must also be adapted to these new processes. Therefore it is suitable to use structural optimization. To achieve the best results in lightweight design, it is important to have an approach that reduces the volume in the unloaded regions and considers the restrictions and characteristics of the additive manufacturing process. In this contribution, a case study using a humanoid robot is presented. Thus, the pelvis module of a humanoid robot is optimized regarding its weight and stiffness. Furthermore, an integrated design is implemented in order to reduce the number of parts and the screw connections. The manufacturing uses a new aluminum-based material that has been specially developed for use in additive manufacturing and lightweight construction. For the additive manufacturing by means of the Selective Laser Melting (SLM) process, different restrictions and the assembly concepts of the humanoid robot have to be taken into account. These restrictions have to be considered in the setting of the individual parameters and target functions of the structural optimization. As a result, a framework is presented that shows the steps of the redesign and the optimization of the pelvis module. In order to achieve high accuracy with the product, the redesign of the pelvis module is demonstrated with regard to mechanical and thermal postprocessing. Finally, the redesigned part and the different assembly concepts are compared to analyze the economic and technical effects of the optimization.
Der effektive Einsatz von Energie ist vor dem Hintergrund von begrenzten Ressourcen und der Forderung nach einer Reduzierung der bei der Energiegewinnung entstehenden Umweltbelastungen von wachsender Bedeutung. Für die noch relativ junge Gruppe der generativen Fertigungsverfahren liegen bis heute kaum Untersuchungen zum Energieverbrauch vor. Deshalb werden in diesem Beitrag zwei weit verbreitete Rapid-Prototyping-Verfahren (3D-Drucken und Fused Deposition Modeling) hinsichtlich ihres Energieverbrauchs untersucht und verglichen. Zudem werden Maßnahmen zur Steigerung der Energieeffizienz aufgezeigt und Einsparmöglichkeiten genannt.
As a reaction to the increasing market dynamics and complex requirements, today’s products need to be developed quickly and customized to the customer’s individual needs. In the past, CAD systems are mainly used to visualize the model that the product designer creates. Generative Design shifts the task of the CAD program by actively participating in the shaping process. This results in more design options and the complexity of the shapes and geometries increases significantly. This potential can be optimally exploited through the combination of Generative Design with Additive Manufacturing (AM). Artificial intelligence and the input of target parameters generate geometries, for example, by creating material for stressed areas, which in turn develops biomorphic shapes and thus significantly reduces the consumption of resources. This contribution aims at the evaluation of existing applications in CAD systems for generative design. Special attention is paid to the requirements in design education and easy access for students. For this purpose, three representative CAD systems are selected and analyzed with the help of a comprehensive example of mass reduction. The aim is to perform an individual result analysis in order to assess the application based on various criteria. By using different materials, the influence of the material for the generation is investigated by comparing the material distribution. By comparing the generated models, differences of the CAD systems can be identified and possible fields of application can be presented. By specifying the manufacturing parameters for the generation of the models, the feasibility of AM can be guaranteed without having to modify the results. The physical implementation of the example by means of Fused Deposition Modeling demonstrates this in an exemplary way and examines the interface of the Generative Design and AM. The results of this contribution will enable an evaluation of the different CAD systems for Generative Design according to technical, visual and economic aspects.
Additive Manufacturing of High-Strength components using impregnated polymer plaster composites
(2015)
Various methods of Digital Manufacturing (DM) have been available for the manufacturing of physical architectural models for several years. This paper highlights the advantages of 3D printing for digital manufacturing of detailed architectural models. In particular, the representation of architectural details and textures is treated. Furthermore, two new methods are being developed in order to improve the conditions for the application of digital manufacturing of architectural models.