Refine
Year of publication
Document Type
- Conference Proceeding (64)
- Article (reviewed) (11)
- Book (9)
- Contribution to a Periodical (4)
- Patent (4)
- Article (unreviewed) (3)
- Part of a Book (1)
- Letter to Editor (1)
Conference Type
- Konferenzartikel (62)
- Konferenz-Abstract (1)
- Konferenz-Poster (1)
Language
- English (68)
- German (28)
- Other language (1)
Is part of the Bibliography
- yes (97)
Keywords
- Additive Manufacturing (12)
- Ausbildung (6)
- Produktion (6)
- CAD (5)
- Additive Tooling (4)
- Design (4)
- Digitalisierung (3)
- Druck (3)
- Götz von Berlichingen (3)
- 3D-Druck (2)
Institute
- Fakultät Wirtschaft (W) (89)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (10)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (5)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (4)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (1)
- WLRI - Work-Life Robotics Institute (1)
- Zentrale Einrichtungen (1)
Open Access
- Open Access (38)
- Closed Access (32)
- Closed (14)
- Gold (4)
- Diamond (3)
- Bronze (2)
- Hybrid (2)
The modern world of design is one of constant change and technological progress. One emerging technology that has the potential to revolutionize the design is additive manufacturing. This innovative technology challenges existing manufacturing processes to reflect and enable the efficient production of complex and customized objects through reimagination. Design education for additive manufacturing plays a crucial role in educating future designers to resist the adherence to conventional processes and to promote the recovery of innovative thinking. Therefore, it is significant to explore the integration of this emerging technology in academic education and identify the associated chances and challenges to ensure effective knowledge transfer to students. This paper explores how the integration of additive manufacturing into design education is being implemented in the fields of design and architecture worldwide. Thus, the courses offered in academic curricula in universities and by libraries are analyzed and the expected benefits are determined.
4D printing is the next step in additive manufacturing. Magnetoresponsive materials facilitate the creation of gripping tools through 4D printing, allowing for structural changes in response to external stimuli. In this study, the structural change is manifested as motion, triggered by an external magnetic field. This technology offers significant advantages in medical and industrial applications, including the printing of life-like moving organ models for medical training and the development of actuators for use in explosive environments. Magnetoresponsive materials are programmed with a magnetic profile and actuated by an external magnetic field. A compound of strontium ferrite microparticles Sr Fe12 O19 (≤ 20μm) and an elastic polymer (thermoplastic copolyester) with a Hardness of Shore D 40 was produced. A star-shaped body was programmed and actuated by two permanent magnets, each of Br = 1.29 − 1.32T. As there is no analytical approach for calculating the required actuation flux density, one has been developed. The approach is verified experimentally by using a Hall probe. It is appropriate to set the field with a Helmholtz coil, despite the utilization of two permanent magnets. The use of a commercial fused filament fabrication printer for the processing of magnetoresponsive materials has been realized here for the first time. The main contributions are the short time constant (around ta = 0.1s) for actuation and the repeatability (around n = 200 actuation cycles) of the motion. The feasibility of multiple diverse reprogramming is a step forward in 4D printing. Hence, the post-print programming and the inhomogeneity of the field limit the ease of the presented method.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.
A method for 3D printing of a robot element, more particularly a finger for use in robotics. At least one sensor is concomitantly printed by means of multi-material printing during the printing of the robot element. A gripping element produced by a method of this kind includes a number of printed layers of robot element material and a concomitantly printed sensor.
Die Erfindung betrifft ein Verfahren zum 3D-Druck eines Roboterelements, insbesondere eines Fingers 5, zum Einsatz in der Robotik, bei dem mittels Multimaterialdruck wenigstens ein Sensor 7 während des Drucks des Roboterelements mitgedruckt wird. Weiterhin betrifft die Erfindung ein Betätigungs- oder Greifelement, insbesondere Finger 5 für einen Roboter, das durch ein derartiges Verfahren hergestellt wurde.
Various methods of Digital Manufacturing (DM) have been available for the manufacturing of physical architectural models for several years. This paper highlights the advantages of 3D printing for digital manufacturing of detailed architectural models. In particular, the representation of architectural details and textures is treated. Furthermore, two new methods are being developed in order to improve the conditions for the application of digital manufacturing of architectural models.
As a reaction to the increasing market dynamics and complex requirements, today’s products need to be developed quickly and customized to the customer’s individual needs. In the past, CAD systems are mainly used to visualize the model that the product designer creates. Generative Design shifts the task of the CAD program by actively participating in the shaping process. This results in more design options and the complexity of the shapes and geometries increases significantly. This potential can be optimally exploited through the combination of Generative Design with Additive Manufacturing (AM). Artificial intelligence and the input of target parameters generate geometries, for example, by creating material for stressed areas, which in turn develops biomorphic shapes and thus significantly reduces the consumption of resources. This contribution aims at the evaluation of existing applications in CAD systems for generative design. Special attention is paid to the requirements in design education and easy access for students. For this purpose, three representative CAD systems are selected and analyzed with the help of a comprehensive example of mass reduction. The aim is to perform an individual result analysis in order to assess the application based on various criteria. By using different materials, the influence of the material for the generation is investigated by comparing the material distribution. By comparing the generated models, differences of the CAD systems can be identified and possible fields of application can be presented. By specifying the manufacturing parameters for the generation of the models, the feasibility of AM can be guaranteed without having to modify the results. The physical implementation of the example by means of Fused Deposition Modeling demonstrates this in an exemplary way and examines the interface of the Generative Design and AM. The results of this contribution will enable an evaluation of the different CAD systems for Generative Design according to technical, visual and economic aspects.
Der effektive Einsatz von Energie ist vor dem Hintergrund von begrenzten Ressourcen und der Forderung nach einer Reduzierung der bei der Energiegewinnung entstehenden Umweltbelastungen von wachsender Bedeutung. Für die noch relativ junge Gruppe der generativen Fertigungsverfahren liegen bis heute kaum Untersuchungen zum Energieverbrauch vor. Deshalb werden in diesem Beitrag zwei weit verbreitete Rapid-Prototyping-Verfahren (3D-Drucken und Fused Deposition Modeling) hinsichtlich ihres Energieverbrauchs untersucht und verglichen. Zudem werden Maßnahmen zur Steigerung der Energieeffizienz aufgezeigt und Einsparmöglichkeiten genannt.