Refine
Year of publication
Document Type
- Conference Proceeding (64)
- Article (reviewed) (10)
- Book (8)
- Contribution to a Periodical (4)
- Patent (4)
- Article (unreviewed) (3)
- Part of a Book (1)
- Letter to Editor (1)
Conference Type
- Konferenzartikel (62)
- Konferenz-Abstract (1)
- Konferenz-Poster (1)
Language
- English (67)
- German (27)
- Other language (1)
Is part of the Bibliography
- yes (95)
Keywords
- Additive Manufacturing (11)
- Ausbildung (6)
- Produktion (6)
- CAD (5)
- Additive Tooling (4)
- Design (4)
- Digitalisierung (3)
- Druck (3)
- Götz von Berlichingen (3)
- 3D-Druck (2)
Institute
- Fakultät Wirtschaft (W) (87)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (10)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (5)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (4)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (1)
- WLRI - Work-Life Robotics Institute (1)
- Zentrale Einrichtungen (1)
Open Access
- Open Access (38)
- Closed Access (32)
- Closed (12)
- Gold (4)
- Bronze (3)
- Diamond (3)
- Hybrid (1)
In addition to traditional methods in product development, the increasing availability of additive manufacturing AM technologies offer new opportunities in product development processes today. This contribution explores several ways in which AM can productively be used in education. New to this approach is amongst others that the students assemble and install the 3D-printers themselves. In two case studies is demonstrated how students in design education are able to autonomously research and realize technical possibilities and limitations of AM technologies, as well as economic constraints.
Der effektive Einsatz von Energie ist vor dem Hintergrund von begrenzten Ressourcen und der Forderung nach einer Reduzierung der bei der Energiegewinnung entstehenden Umweltbelastungen von wachsender Bedeutung. Für die noch relativ junge Gruppe der generativen Fertigungsverfahren liegen bis heute kaum Untersuchungen zum Energieverbrauch vor. Deshalb werden in diesem Beitrag zwei weit verbreitete Rapid-Prototyping-Verfahren (3D-Drucken und Fused Deposition Modeling) hinsichtlich ihres Energieverbrauchs untersucht und verglichen. Zudem werden Maßnahmen zur Steigerung der Energieeffizienz aufgezeigt und Einsparmöglichkeiten genannt.
Application of Polymer Plaster Composites in Additive Manufacturing of High-Strength Components
(2015)
Today, 3D-printing with polymer plaster composites is a common method in Additive Manufacturing. This technique has proven to be especially suitable for the production of presentation models, due to the low cost of materials and the possibility to produce color-models. But nowadays it requires refinishing through the manual application of a layer of resin. However, the strength of these printed components is very limited, as the applied resin only penetrates a thin edge layer on the surface. This paper develops a new infiltration technique that allows for a significant increase in the strength of the 3D-printed component. For this process, the components are first dehydrated in a controlled two-tier procedure, before they are then penetrated with high-strength resin. The infiltrate used in this process differs significantly from materials traditionally used for infiltration. The result is an almost complete penetration of the components with high-strength infiltrate. As the whole process is computer-integrated, the results are also easier to reproduce, compared to manual infiltration. On the basis of extensive material testing with different testing specimen and testing methods, it can be demonstrated that a significant increase in strength and hardness can be achieved. Finally, this paper also considers the cost and energy consumption of this new infiltration method. As a result of this new technology, the scope of applicability of 3D-printing can be extended to cases that require significantly more strength, like the production of tools for the shaping of metals or used for the molding of plastics. Furthermore, both the process itself and the parameters used are monitored and can be optimized to individual requirements and different fields of application.
For some years now, additive manufacturing (AM) has offered an alternative to conventional manufacturing processes. The strengths of AM are primarily the rapid implementation of ideas into a usable product and the ability to produce geometrically complex shapes. It has also significantly advanced the lightweight design of products made of plastic. So far, the strength of printed components made of polymers is previously very limited.
Recently, new AM processes have become available that allow the embedding of short and also long fibers in polymer matrix. Thus, the manufacturing of components that provide a significant increase in strength becomes possible. In this way, both complex geometries and sophisticated applications can be implemented. This paper therefore investigates how this new technology can be implemented in product development, focusing on sports equipment. An extensive literature research shows that lightweight design plays a decisive role in sports equipment. In addition, the advantages of AM in terms of individualized products and low quantities can be fully exploited.
An example of this approach is the steering system for a seat sled used by paraplegic athletes in the Olympic discipline of Nordic paraskiing. A particular challenge here is the placement and alignment of the long carbon fibers within the polymer matrix and the verification of the strength by means of Finite-Element-Analysis (FEA). In addition, findings from bionics are used to optimize the lightweight design of the steering system. Using this example, it can be shown that the weight of the steering system can be drastically reduced compared to conventional manufacturing. At the same time, a number of parts can be saved through function integration and thus the manufacturing and assembly effort can be reduced significantly.
As a reaction to the increasing market dynamics and complex requirements, today’s products need to be developed quickly and customized to the customer’s individual needs. In the past, CAD systems are mainly used to visualize the model that the product designer creates. Generative Design shifts the task of the CAD program by actively participating in the shaping process. This results in more design options and the complexity of the shapes and geometries increases significantly. This potential can be optimally exploited through the combination of Generative Design with Additive Manufacturing (AM). Artificial intelligence and the input of target parameters generate geometries, for example, by creating material for stressed areas, which in turn develops biomorphic shapes and thus significantly reduces the consumption of resources. This contribution aims at the evaluation of existing applications in CAD systems for generative design. Special attention is paid to the requirements in design education and easy access for students. For this purpose, three representative CAD systems are selected and analyzed with the help of a comprehensive example of mass reduction. The aim is to perform an individual result analysis in order to assess the application based on various criteria. By using different materials, the influence of the material for the generation is investigated by comparing the material distribution. By comparing the generated models, differences of the CAD systems can be identified and possible fields of application can be presented. By specifying the manufacturing parameters for the generation of the models, the feasibility of AM can be guaranteed without having to modify the results. The physical implementation of the example by means of Fused Deposition Modeling demonstrates this in an exemplary way and examines the interface of the Generative Design and AM. The results of this contribution will enable an evaluation of the different CAD systems for Generative Design according to technical, visual and economic aspects.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.