Refine
Year of publication
Document Type
- Conference Proceeding (38)
- Article (reviewed) (6)
- Patent (4)
- Contribution to a Periodical (3)
- Part of a Book (1)
- Article (unreviewed) (1)
- Report (1)
Conference Type
- Konferenzartikel (33)
- Konferenz-Poster (3)
- Konferenz-Abstract (1)
- Sonstiges (1)
Language
- English (41)
- German (12)
- Other language (1)
Is part of the Bibliography
- yes (54)
Keywords
- Robotics (5)
- energy harvesting (4)
- Funktechnik (3)
- Kommunikation (3)
- Sicherheit (3)
- 3D printing (2)
- Applikation (2)
- Data analysis (2)
- Datensicherung (2)
- Human-Robot Collaboration (2)
Institute
Open Access
- Closed Access (25)
- Open Access (15)
- Closed (11)
- Bronze (5)
- Diamond (2)
- Gold (2)
Robotics offers new solutions for digital customer interaction. Social robots can be used in applications such as customer support, guiding people to a location on company premises, or entertainment and education. An emerging area of research is the application in community facilities for people with disabilities. Such facilities face a shortage of skilled workers that could be addressed by robotics. In this work, the application of social and collaborative robots in care facilities and workshops for the disabled is presented by providing a requirements analysis. The use of the humanoid robot Pepper in assisted living was tested and subsequently evaluated in interviews with caregivers who initiated and observed the interaction between the group and the robot. Additionally, robotic applications in assisted work were assessed, resulting in a divergence from the industrial use of robots. A comparative overview with recent literature is presented. The connection between the community home and the workshop raised the question of whether the use of different robots in both places could lead to conflicts.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.
A method for 3D printing of a robot element, more particularly a finger for use in robotics. At least one sensor is concomitantly printed by means of multi-material printing during the printing of the robot element. A gripping element produced by a method of this kind includes a number of printed layers of robot element material and a concomitantly printed sensor.
Die Erfindung betrifft ein Verfahren zum 3D-Druck eines Roboterelements, insbesondere eines Fingers 5, zum Einsatz in der Robotik, bei dem mittels Multimaterialdruck wenigstens ein Sensor 7 während des Drucks des Roboterelements mitgedruckt wird. Weiterhin betrifft die Erfindung ein Betätigungs- oder Greifelement, insbesondere Finger 5 für einen Roboter, das durch ein derartiges Verfahren hergestellt wurde.
Separation Estimation with Thermal Cameras for Separation Monitoring in Human-Robot Collaboration
(2022)
Human-Robot Collaborative applications have the drawback of being less efficient than their non-collaborative counterparts. One of the main reasons is, that the robot has to slow down when a human being is within the operating space of the robot. There are different approaches on dynamic speed and separation monitoring in human-robot collaborative applications. One approach additionally differentiates between human and non-human objects to increase efficiency in speed and separation monitoring. This paper proposes to estimate the separation distance by measuring the temperature of the approaching object. Measurements show that the measured temperature of a human being decreases with 1 deg C per meter distance from the sensor. This allows an estimation of separation between a robotic system and a human being.
Dieser Beitrag stellt die Möglichkeiten des 3D-Druckes unter der Berücksichtigung von Mensch-Roboter-Kollaborations-Anforderungen dar. Dabei werden die Vorteile mit besonderem Fokus auf die zusätzliche Gestaltungsfreiheit erläutert. Anhand von Beispielen wird der Stand der Technik bereits eingesetzter Sensorik sowie deren Notwendigkeit in Greifsystemen erläutert. Im weiteren Verlauf dieses Beitrags werden allgemeine Verfahren für die additive Verarbeitung von leitfähigen Materialien vorgestellt. Daran angeknüpft sind Beispiele speziell zur 3D-gedruckten Sensorik. Abgerundet wird der Beitrag mit einem Ausblick bezüglich 3D-gedruckter Sensorik in MRK-Greifsystemen.
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
Novel approaches for the design of assistive technology controls propose the usage of eye tracking devices such as for smart wheelchairs and robotic arms. The advantages of artificial feedback, especially vibrotactile feedback, as opposed to their use in prostheses, have not been sufficiently explored. Vibrotactile feedback reduces the cognitive load on the visual and auditory channel. It provides tactile sensation, resulting in better use of assistive technologies. In this study the impact of vibration on the precision and accuracy of a head-worn eye tracking device is investigated. The presented system is suitable for further research in the field of artificial feedback. Vibration was perceivable for all participants, yet it does not produce any significant deviations in precision and accuracy.
Established robot manufacturers have developed methods to determine and optimize the accuracy of their robots. These methods vary from robot manufacturers to their competitors. Due to the lack of published data, a comparison of robot performance is difficult. The aim of this article is to find methods to evaluate important characteristics of a robot with an accurate and cost-effective setup. A laser triangulation sensor and geometric referenced spheres were used as a base to compare the robot performance.