Refine
Document Type
Conference Type
- Konferenzartikel (11)
Language
- English (12)
Is part of the Bibliography
- yes (12)
Keywords
- Education (2)
- VR (2)
- learning scenarios (2)
- optics and photonics (2)
- research-oriented education (2)
- Astronomical events (1)
- Augmented Reality (1)
- Augmented reality (1)
- Circular polarizing filter (1)
- Curricular concepts (1)
Institute
Open Access
- Open Access (7)
- Hybrid (4)
- Closed Access (3)
- Closed (1)
Teaching and learning concepts that are adapted to the constantly evolving requirements due to rapid technological progress are essential for teaching in media photonics technology. After the development of a concept for research-oriented education in optics and photonics, the next step will be a conceptual restructuring and redesign of the entire curriculum for education in media photonics technology. By including typical research activities as essential components of the learning process, a broad platform for practical projects and applied research can be created, offering a variety of new development opportunities.
Not only is the number of new devices constantly increasing, but so is their application complexity and power. Most of their applications are in optics, photonics, acoustic and mobile devices. Working speed and functionality is achieved in most of media devices by strategic use of digital signal processors and microcontrollers of the new generation. Considering all these premises of media development dynamics, the authors present how to integrate microcontrollers and digital signal processors in the curricula of media technology lectures by using adequate content. This also includes interdisciplinary content that consists of using the acquired knowledge in media software. These entries offer a deeper understanding of photonics, acoustics and media engineering.
Monitors are in the center of media productions and hold an important function as the main visual interface. Tablets and smartphones are becoming more and more important work tools in the media industry. As an extension to our lecture contents an intensive discussion of different display technologies and its applications is taking place now. The established LCD (Liquid Crystal Display) technology and the promising OLED (Organic Light Emitting Diode) technology are in the focus.
The classic LCD is currently the most important display technology. The paper will present how the students should develop sense for display technologies besides the theoretical scientific basics. The workshop focuses increasingly on the technical aspects of the display technology and has the goal of deepening the students understanding of the functionality by building simple Liquid Crystal Displays by themselves.
The authors will present their experience in the field of display technologies. A mixture of theoretical and practical lectures has the goal of a deeper understanding in the field of digital color representation and display technologies. The design and development of a suitable learning environment with the required infrastructure is crucial. The main focus of this paper is on the hands-on optics workshop “Liquid Crystal Display in the do-it-yourself”.
The paper describes the implementation of practical laboratory settings in a virtual environment. With the entry of VR glasses into the mass market, there is a chance to establish educational and training applications for displaying some teaching materials and practical works. Therefore our project focuses on the realization of virtual experiments and environments, which gives users a deep insight into selected subfields of Optics and Photonics. Our goal is not to substitute the hand on experiments rather to extend them. By means of VR glasses, the user is offered the possibility to view the experiment from several angles and to make changes through interactive control functions. During the VR application, additional context-related information is displayed. By using object recognition, the specific graphics and texts for the respective object are loaded and supplemented at the appropriate place. Thus, complex facts are supported in an informative way. The prototype is developed using the Unity Engine and can thus be exported to different platforms and end devices. Another major advantage of virtual simulations to the real situation is the high degree of controllability as well as the easy repeatability. With slight modifications, entire experiments can be reused. Our research aims to acquire new knowledge in the field of e-learning in association with VR technology. Here we try to answer a core question of the compatibility of the individual media components.
Live streaming of events over an IP network as a catalyst in media technology education and training
(2020)
The paper describes how students are involved in applied research when setting up the technology and running a live event. Real-time IP transmission in broadcast environments via fiber optics will become increasingly important in the future. Therefore, it is necessary to create a platform in this area where students can learn how to handle IP infrastructure and fiber optics. With this in mind, we have built a fully functional TV control room that is completely IP-based. The authors present the steps in the development of the project and show the advantages of the proposed digital solutions. The IP network proves to be a synergy between the involved teams: participants of the robot competition and the members of the media team. These results are presented in the paper. Our activities aim to awaken enthusiasm for research and technology in young people. Broadcasts of live events are a good opportunity for "hands on" activities.
Astronomical phenomena fascinate people from the very beginning of mankind up to today. In this paper the authors will present their experience with photography of astronomical events. The main focus will be on aurora borealis, comet Neowise, total lunar eclipses and how mobile devices open up new possibilities to observe the green flash. Our efforts were motivated by the great impact and high number of viewers of these events. Visitors from over a hundred countries watched our live broadcasts.
Furthermore, we report on our experiences with the photography of optical phenomena such as polar lights Fig. 1, comet Neowise with a Delta Aquariids meteor Fig. 11, and lunar eclipses Fig. 12.
Redesigning a curriculum for teaching media technology is a major challenge. Up-to-date teaching and learning concepts are necessary that meet the constant technological progress and prepare students specifically for their professional life. Teaching and studying should be characterized by a student-oriented teaching and learning culture. In order to achieve this goal, consistent evaluation is essential. The aim of the evaluation concept presented here is to generate structured information regarding the quality of content-related, didactic and organizational aspects of teaching. The exchange of opinions between students and lecturers should be encouraged in order to continuously improve the teaching and learning processes.
Currently, immersive technologies are enjoying great popularity. This trend is reflected in technological advances and the emergence of new products for the mass market, such as augmented reality glasses. The range of applications for immersive technologies is growing with more efficient and affordable technologies and student adoption. Especially in education, the use will improve existing learning methods. Immersive application use visual, audio and haptic sensors to fully engage the user in a virtual environment. This impression is reinforced with the help of realistic visualizations and the opportunity for interaction. In particular, Augmented reality is characterized by a high degree of integration between reality and the inserted virtual objects. An augmented interactive simulation for the determination of the specific charge of an electron will be used as an example to demonstrate how such immersion can be created for users. A virtual Helmholtz coil is used to measure and calculate the e/m constant. The voltage at the cathode for generating the electron beam, but also the voltage of the homogeneous magnetic field for deflecting the electron beam, can be variably controlled by haptic user input. Based on these voltages, an immersive virtual electron beam is calculated and visualized. In this paper, the authors present the conceptual steps of this immersive application and address the challenges associated with designing and developing an augmented and interactive simulation.