Refine
Year of publication
Document Type
- Conference Proceeding (14)
- Patent (9)
- Contribution to a Periodical (5)
- Article (reviewed) (3)
- Article (unreviewed) (2)
Conference Type
- Konferenzartikel (14)
Is part of the Bibliography
- yes (33)
Keywords
- Rohrleitung (5)
- Hubschrauber (4)
- Raman-Spektroskopie (3)
- Spektroskopie (2)
- 2D-Ortung (1)
- 3D-Ortung (1)
- Autonomer Helikopter (1)
- Autonomer Hubschrauber (1)
- Avionik (1)
- Berechnung (1)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (26)
- Fakultät Wirtschaft (W) (5)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (2)
- Zentrale Einrichtungen (2)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (1)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (1)
- IUAS - Institute for Unmanned Aerial Systems (1)
Open Access
- Open Access (15)
- Closed Access (11)
- Bronze (8)
- Closed (5)
Eine Gruppe von Studierenden, wissenschaftlichen Mitarbeitern und Professoren der Hochschule Offenburg entwickeln seit einigen Jahren autonome Helikopter. Erfahrungen durch praktische Tests und Einsätze ermöglichen eine stetige Optimierung dieser Fluggeräte, sodass sich wiederum viele unterschiedliche Aufgabengebiete für den Einsatz der autonomen Helikopter ergeben. In diesem Beitrag werden die bereits erfolgten praktischen Einsätze erläutert.
Komplexe optische Netzwerke fordern eine immer größere Anzahl an permanenten und dämpfungsarmen Glasfaserverbindungen (Spleiße). Eine wichtige Voraussetzung für hochqualitative Spleiße ist eine geeignete Temperaturverteilung. Die Autoren stellen eine In-situ-Methode zur Temperaturkontrolle durch Bildbearbeitung vor.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
The development and manufacturing of unmanned aerial vehicles (UAVs) require a multitude of design rules. Thereby, additive manufacturing (AM) processes provide a number of significant advantages over conventional production methods, particularly for implementing requirements with regard to lightweight construction and sustainability. A new, promising approach is presented, with which, through the combination of very light structural elements with a ribbed construction, an attached covering by means of foil is used. This contribution develops and presents a development process that is based on various development cycles. Such cycles differ in their effort and scope within the overall development, and may only comprise one part of the development process, or the entire development process. The applicability of this development process is demonstrated within the framework of a comprehensive case study. The aim is to develop an additively manufactured product that is as light as possible in the form of a UAV, along with a sustainable manufacturing process for such product. Finally, the results of this case study are analyzed with regard to the improvement of lightweight construction.
A number of design rules must be adhered to in the development and manufacturing of unmanned aerial vehicles. In this, additive manufacturing, particularly in the implementation of requirements with respect to light-weight construction and sustainability, offers several advantages compared to conventional manufacturing methods. Therefore, this article will primarily introduce and compare current concepts for sustainable design using additive manufacturing. These will, above all, consist of the production of complete fuselages and wings by means of rapid prototyping or also rapid tooling. In addition, a new concept will be introduced in which a UAV using AM can be implemented through the combination of very light components and a preferably resource-saving manufacturing method. In this process, a three-dimensional spaceframe is used in combination with a covering in the construction of the wing. Hereby, the development process for sustainable design using additive manufacturing will be analyzed and the results will be explained by means of concrete case studies. In conclusion, the results of these case studies will be compared to the latest technology regarding wing span load.
The fast and cost-effective manufacturing of tools for thermoforming is an essential requirement to shorten the development time of products. Thus, additive processes are used increasingly in tooling for thermoforming of plastic sheets. However, a disadvantage of many additive methods is that they are highly cost-intensive, since complex systems based on laser technology and expensive metal powders are needed. Therefore, this paper examines how to work with favorable additive methods, e.g. Binder Jetting, to manufacture tools, which provide sufficient strength for thermoforming. The use of comparatively low-priced inkjet technology for the layer construction and a polymer plaster as material can be expected to result in significant cost reductions. Based on a case study using a cowling (engine bonnet) for an Unmanned Aerial Vehicle (UAV), the development of a complex tool for thermoforming is demonstrated. The object in this study is to produce a tool for a complex-shaped component in small numbers and high quality in a short time and at reasonable costs. Within the tooling process, integrated vacuum channels are implemented in additive tooling without the need for additional post-processing (for example, drilling). In addition, special technical challenges, such as the demolding of undercuts or the parting of the tool are explained. All process steps from tool design to the use of the additively manufactured tool are analyzed. Based on the manufacturing of a small series of cowlings for a UAV made of plastic sheets (ABS), it is shown, that the Binder Jetting offers sufficient mechanical and thermal strength for additive tooling. In addition, an economic evaluation of the tool manufacturing and a detailed consideration of the required manufacturing times for the different process steps are carried out. Finally, a comparison is made with conventional and alternative additive methods of tooling.
The ability to change aerodynamic parameters of airfoils during flying can potentially save energy as well as reducing the noise made by the unmanned aerial vehicles (UAV) because of sharp edges of the airfoil and its rudders. In this paper, an approach for the design of an adaptive wing using a multi-material 3D printer is shown. In multi-material 3D printing, up to six different materials can be combined in one component. Thus, the user can determine the mixture and the spatial arrangement of this “digital material” in advance in the pre-processing software. First, the theoretical benefits of adaptive wings are shown, and already existing adaptive wings and concepts are explicated within a literature review. Then the additive manufacturing process using photopolymer jetting and its capabilities to print multiple materials in one part are demonstrated. Within the scope of a case study, an adaptive wing is developed and the necessary steps for the product development and their implementation in CAD are presented. This contribution covers the requirements for different components and sections of an adaptive wing designed for additive manufacturing using multiple materials as well as the single steps of development with its different approaches until the final design of the adaptive wing. The developed wing section is simulated, and qualitative tests in a wind tunnel are carried out with the wing segment. Finally, the additively manufactured wing segment is evaluated under technical and economic aspects.
Verfahren zur Bestimmung von Eigenschaften einer Rohrleitung, insbesondere der Position eines Abzweigs einer Abwasserrohrleitung,(a) bei dem ein Schallwellensendesignal (S, S') an einem vorgegebenen Einspeisepunkt in die Rohrleitung (1) eingespeist wird und sich in axialer Richtung der Rohrleitung (1) ausbreitet,(b) wobei das Frequenzspektrum des Schallwellensendesignals (S, S') eine Frequenzkomponente oder einen Spektralbereich aufweist, dessen maximale Frequenz kleiner ist als die untere Grenzfrequenz (f) für die erste Obermode,(c) bei dem innerhalb der Rohrleitung (1) reflektierte Anteile (S, S, S, S', S', S') des Schallwellensendesignals (S, S') als Schallwellenempfangssignal (E, E') detektiert werden, und(d) bei dem die Rohrleitung (1) durch eine Auswertung des Schallwellenempfangssignal (E, E') in Bezug auf das Schallwellensendesignal (S, S') hinsichtlich des Vorhandenseins von Schallwellenreflexionen (S, S, S, S', S', S') verursachenden Reflexionsorten entlang der Rohrleitung (1) untersucht wird,(e) wobei mittels der Auswertung des Schallwellenempfangssignals (E, E') zumindest jeweils der Abstand (I) eines Reflexionsortes von dem Einspeisepunkt bestimmt wird, dadurch gekennzeichnet,(f) dass die Schallgeschwindigkeit (c) der Grundmode bei der aktuellen Temperatur innerhalb der Rohrleitung (1) unter Verwendung eines Schallwellenmesssignals ermittelt wird, welches eine Frequenz oder ein Frequenzspektrum aufweist, bei dem das Schallwellenmesssignal innerhalb der Rohrleitung (1) mit ausreichender Genauigkeit als ebene Schallwelle behandelt werden kann, wobei hierzu die Laufzeiten des Schallwellenmesssignals über eine vorbekannte Strecke (L) in beiden Richtungen gemessen wird,(g) dass die so ermittelte Schallgeschwindigkeit (c) einer ebenen Schallwelle gleich der tatsächlichen Schallgeschwindigkeit der Grundmode bei der aktuellen Temperatur innerhalb der Rohrleitung (1) gesetzt wird, und(h) dass die so bestimmte Schallgeschwindigkeit zur Bestimmung des Abstand (I) eines Reflexionsortes von dem Einspeisepunkt verwendet wird.
An der Hochschule Offenburg wird ein autonomer Hubschrauber entwickelt. Die Zelle besteht aus einem kommerziellen Modellhubschrauber Typ Align TREX 600. Als Antrieb dient ein bürstenloser 1.6-kW-Elektromotor mit ca. 40.000 U/min, der von einem 22-V-Lithium-Polymer-Akkumulator mit 5 Ah Speicherkapazität gespeist wird. Das Abfluggewicht des Hubschraubers beträgt ca. 3 kg. Sein Hauptrotor ist ein Zweiblattrotor mit Bell-Hiller-Mechanik. Der Heckrotor wird über einen Zahnriemen von der Hauptrotorwelle abgehend angetrieben. Der Hubschrauber ist autorotationsfähig. <br>Für die Flugregelung wurde ein Kurs-Lagereferenzsystem entwickelt. Die eigentliche Flugregelung sowie die Datenerfassung der Sensoren erfolgt über zwei Atmega128-Mikroprozessoren. Der Hubschrauber ist mit einem Datenlink über Bluetooth mit einem PC am Boden verbunden.